Читать книгу EXTREMOPHILES as Astrobiological Models - Группа авторов - Страница 43
References
Оглавление2.1. Aguilera, A. and Amils, R., Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquat. Toxicol., 75, 316–329, 2005.
2.2. Aguilera, A., Manrubia, S.C., Gómez, F., Rodríguez, N., Amils, R., Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Río Tinto (Southwestern Spain). Appl. Environ. Microbiol., 72, 5325–5330, 2006.
2.3. Aguilera, A., Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life, 3, 363–374, 2013.
2.4. Aguilera, A., Olsson, S., Puente-Sánchez, F., Physiological and phylogenetic diversity in acidophilic eukaryotes, in: Acidophiles: Life in Extremely Acidic Conditions, B. Johnson and R. Quatrini (Eds.), pp. 107–118, Caister Academic Press, UK, 2016.
2.5. Amaral-Zettler, L.A., Gómez, F., Zettler, E., Keenan, B.G., Amils, R., Sogin, M.L., Eukaryotic diversity in Spain’s River of Fire. Nature, 417, 137, 2002.
2.6. Amaral-Zettler, L., Zettler, E.R., Theroux, S.M., Palacios, C., Aguilera, A., Amils, R., Microbial community structure across the tree of life in the extreme Río Tinto. ISME J., 5, 1, 42–50, 2010.
2.7. Amils, R., González-Toril, E., Gómez, F., Fernández-Remolar, D., Rodríguez, N., Malki, M., Zuluaga, J., Aguilera, A., Amaral-Zettler, L.A., Importance of chemolithotrophy for early life on Earth: The Tinto River (Iberian Pyritic Belt) case, in: Origins, J. Seckbach (Ed.), pp. 463–480, Kluwer Academic Publishers, Amsterdam, NL, 2004.
2.8. Amils, R., González-Toril, E., Fernández-Remolar, D., Gómez, F., Aguilera, A., Rodríguez, N., Malki, M., García-Moyano, A., González-Fairén, A., de la Fuente, V., Sanz, J.L., Extreme environments as Mars terrestrial analogs: The Río Tinto case. Planet. Space Sci., 55, 370–381, 2007.
2.9. Amils, R., Fernández-Remolar, D., Gómez, F., González-Toril, E., Rodríguez, N., Briones, C., Prieto-Ballesteros, O., Sanz, J.L., Díaz, E., Stevens, T.O. et al., Subsurface geomicrobiology of the Iberian Pyritic Belt, in: Microbiology of Extreme Soils [Volume 13 in the series: Soil Biology], P. Dion and C.S. Nautiyal (Eds.), pp. 205–223, Springer-Verlag, Berlin, GE, 2008.
2.10. Amils, R., Fernández-Remolar, D., Parro, V., Rodríguez-Manfredi, J.A., Timmis, K., Oggerin, M., Sánchez-Román, M., López, F.J., Fernández, J.P., Puente, F. et al., Iberian Pyrite Belt Subsurface Life (IPBSL), a drilling Project of biohydrometallurgical interest. Adv. Mat. Res., 825, 15–18, 2013.
2.11. Amils, R., Fernández-Remolar, D., the IPBSL Team, Río Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life, 4, 511–534, 2014.
2.12. Amils, R., Lessons learned from thirty years of geomicrobiological studies of Río Tinto. Res. Microbiol., 167, 7, 539–545, 2016.
2.13. Amils, R. and Fernández-Remolar, D., Acidophiles and Astrobiology, in: Acidophiles, Life in Extremely Acidic Conditions, B. Johnson and R. Quatrini (Eds.), pp. 285–300, Caister Academic Press, UK, 2016.
2.14. Archibald, F., Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol. Lett., 19, 29–32, 1983.
2.15. Bachofen, R., Ferloni, P., Flynn, L., Review: Microorganisms in the subsurface. Microbiol. Res., 153, 1–22, 1998.
2.16. Benz, M., Brune, A., Schink, B., Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch. Microbiol., 169, 159–165, 1998.
2.17. Boulter, C.A., Did both extensional tectonics and magmas act as major drivers of convection cells during the formation of the Iberian Pyrite Belt massive sulphide deposits? J. Geol. Soc. London, 153, 181–184, 1996.
2.18. Boyd, W.P., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., Murdoch, R., Bakker, D.C., Bowie, A.R., Buesseler, K.O., Chang, H. et al., A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695–702, 2005.
2.19. Braun, V. and Killmann, H., Bacterial solution to the iron.supply problems. Trends Biochem. Sci., 24, 104–109, 1999.
2.20. Carlson, H.K., Clark, I.C., Blazewicz, S.J., Iavarone, A.T., Coates, J.D., Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J. Bacteriol., 195, 3260–3268, 2013.
2.21. Chapelle, F.H., O´Nelly, K., Bradley, P.M., Methé, B.A., Ciufo, S.A., Knobel, L.L., Lovley, D.R., A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415, 312–314, 2002.
2.22. Colín-García, M., Kanawati, B., Harir, M., Schmidt-Kopplin, P., Amils, R., Parro, V., García, M., Fernández-Remolar, D., Detection of peptidic sequences in the ancient acidic sediments of Río Tinto, Spain. Orig. Life Evol. Biosph., 41, 523–527, 2011.
2.23. Colmer, A.R., Temple, K.L., Hinkle, H.E., An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J. Bacteriol., 59, 317–328, 1950.
2.24. Christensen, P.R., Bandfield, J.L., Clark, R.N., Edgett, K.S., Hamilton, V.E., Hoefen, T., Kieffer, H.H., Kuzmin, R.O., Lane, M.D., Malin, M.C. et al., Detection of cristaline hematite mineralization on Mars by the thermal emission spectrometer: Evidence for near-surface water. J. Geophys. Res., 104, 9623–9642, 2000.
2.25. Christensen, P.R., Morris, R.V., Lane, M.D., Banfield, J.L., Malin, M.C., Global mapping of martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res., 106, 23873–23885, 2001.
2.26. Darwin, C., Voyages of the Adventure and Beagle, in: Volume III, Journal and remarks, pp. 1832–1836, Henry Colburn, London, UK, 1839.
2.27. Davis, Welty, A.T., Borrego, J., Morales, J.A., Pendon, J.G., Ryan, J.G., Río Tinto estuary (Spain): 5000 years of pollution. Environ. Geol., 39, 1107–1116, 2000.
2.28. Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Poulet, F., Bishop, J.L., Brown, A.J., Calvin, W.M., Clark, R.N., Marais, D.J.D., Milliken, R.E. et al., Orbital Identification of Carbonate-Bearing Rocks on Mars. Science, 322, 1828–1832, 2008.
2.29. Ehlmann, B.L. and Mustard, J.F., An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophys. Res. Lett., 39, L11292, 2012.
2.30. Ehrlich, H.L., Newman, D.K., Kappler, A., Ehrlich’s Geomicrobiology, 6th edition, CRC, Boca Ratón, USA, 2015.
2.31. Escudero, C., Vera, M., Oggerin, M., Amils, R., Active microbial biofilms in deep continental subsurface poor porous rock samples from the Iberian Pyrite Belt. Sci. Rep., 8, e1538, 2018.
2.32. Essalhi, M., Sizaret, S., Barbanson, L., Chen, Y., Lagroix, F., Demory, F., Nieto, J., Sáez, R., Capitán, M.A., A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating. Miner. Deposita, 46, 981–999, 2011.
2.33. Farrand, W.H., Glotch, T.D., Rice, J.W., Jr., Hurowitz, J.A., Swayze, G.A., Discovery of jarosite within Mawrth Vallis region of Mars: Implications for the geologicalhistory of the region. Icarus, 204, 478–488, 2009.
2.34. Fairen, A.G., Fernández-Remolar, D., Dohm, J.M., Baker, V.R., Amils, R., Inhibition of carbonate synthesis in acidic oceans from Mars. Nature, 431, 423–426, 2004.
2.35. Fernández-Remolar, D.C., Rodríguez, N., Gómez, F., Amils, R., Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system. J. Geophys. Res., 108, E7, 5080, 2003.
2.36. Fernández-Remolar, D.C., Gómez-Elvira, J., Gómez, F., Sebastián, E., Martín, J., Manfredi, J.A., Torres, J., González Kesler, C., Amils, R., The Tinto River, an extreme acidic environment as an analogue of the Terra Meridiani hematite site of Mars. Planet. Space Sci., 52, 239–248, 2004.
2.37. Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R., Knoll, A.H., The Rio Tinto Basin, Spain: Mineralogy, sedimentary geobiology and implications for interpretation of outcrop rocks of Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240, 149–167, 2005.
2.38. Fernández-Remolar, D., Gómez, F., Prieto-Ballesteros, O., Schelble, R.T., Rodríguez, N., Amils, R., Some ecological mechanisms to generate habitability in planetary subsurfaces areas by chemolithotrophic communities: The Río Tinto subsurface ecosystem as a model system. Astrobiology, 8, 157–173, 2008.
2.39. Fernández-Remolar, D.C. and Knoll, A.H., Fossilization potential of iron-bearing minerals in acidic environments of Rio Tinto, Spain: Implications for Mars exploration. Icarus, 194, 72–85, 2008.
2.40. Fernández-Remolar, D., Prieto-Ballesteros, O., Rodríguez, N., Gómez, F., Amils, R., Gomez-Elvira, J., Stoker, C., Underground habitats found in the Río Tinto Basin: A model for sub-surface life habitats on Mars. Astrobiology, 8, 1023–1046, 2008.
2.41. Fernández-Remolar, D., Prieto-Ballesteros, O., Gómez-Ortiz, D., Fernández-Sampedro, M., Sarrazin, P., Gailhanou, M., Amils, R., Río Tinto sedimentary mineral assemblages: A terrestrial perspective that suggests some formation pathway of phyllosilicates on Mar. Icarus, 211, 114–138, 2011.
2.42. Fernández-Remolar, D.C., Preston, L.J., Sánchez-Román, M., Izawa, M.R.M., Huang, L., Southam, G., Banerjee, N.R., Osinski, G.R., Flemming, R., Gómez-Ortíz, D. et al., Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars. Earth Planet. Sci. Lett., 351, 13–26, 2012.
2.43. Fernández-Remolar, D., Banerjee, N., Gómez-Ortiz, D., Izawwa, M., Amils, R., A mineralogical archive of the biogeochemical sulfur cycle preserved in the subsurface of the Río Tinto system. Am. Mineral., 103, 394–411, 2018.
2.44. Florentino, A.P., Brienza, C., Stams, A.J.M., Sánchez-Andrea, I., Desulfurella amilsii sp.nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. Int. J. Syst. Evol. Microbiol., 66, 1249–1253, 2016.
2.45. Florentino, A.P., Stams, A.J.M., Sánchez-Andrea, I., Genome sequence of Desulfurella amilsii strain TR1 and comparative genomics of Desulfurellaceae family. Front. Microbiol., 8, e222, 2017.
2.46. Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., Detection of methane in the atmosphere of Mars. Science, 306, 1758–1761, 2004.
2.47. García-Moyano, A., González-Toril, E., Aguilera, A., Amils, R., Prokaryotic community composition and ecology of macroscopic floating filaments from an extreme acidic environment, Río Tinto, (SW, Spain). Syst. Appl. Microbiol., 30, 601–614, 2007.
2.48. Garcia-Moyano, A., González-Toril, E., Moreno-Paz, M., Parro, V., Amils, R., Evaluation of Leptospirillum spp. in Rio Tinto, a model of interest to biohydrometallurgy. Hydrometallurgy, 94, 155–161, 2008.
2.49. García Moyano, A., González-Toril, E., Aguilera, A., Amils, R., Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. FEMS Microbiol. Ecol., 81, 303–314, 2012.
2.50. Garrido, P., González-Toril, E., García-Moyano, A., Moreno-Paz, M., Amils, R., Parro, V., An oligonucleotide prokaryotic microarray (PAM): Its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ. Microbiol., 10, 836–850, 2008.
2.51. Geen, A., Adkins, J.F., Boyle, E.A., Nelson, C.H., Palanques, A., A 120-year record of wide-spread contamination from mining of the Iberian Pyrite Belt. Geology, 25, 291–294, 1997.
2.52. Gold, T., The deep hot biosphere. Proc. Natl. Acad. Sci. USA, 89, 6045–6049, 1992.
2.53. Gómez, F., Fernández-Remolar, D., González-Toril, E., Amils, R., The Tinto River, an extreme Gaian environment, in: Gaia 2000, L. Margulis, J. Miller, P. Boston, S. Schneider, C. Crist (Eds.), pp. 321–333, MIT Press, Boston, USA, 2003.
2.54. Gómez, F., Aguilera, A., Amils, R., Soluble ferric iron as an efective protective agent against UV radiation: Implications for early life. Icarus, 191, 352–359, 2007.
2.55. Gómez, F., Mateo-Martí, E., Prieto.Ballesteros, O., Martín-Gago, J., Amils, R., Protection of chemolithotrophic bacteria exposed to Mars environmental conditions. Icarus, 209, 2, 482–487, 2010.
2.56. Gómez-Ortiz, D., Fernández-Remolar, D., Granda, A., Quesada, C., Granda, T., Prieto-Ballesteros, O., Molina, A., Amils, R., Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water. Spain. Earth Planet. Sci. Lett., 391, 36–41, 2014.
2.57. González-Toril, E., Llobet-Brosa, E., Casamayor, E.O., Amann, R., Amils, R., Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol., 69, 4853–4865, 2003.
2.58. González-Toril, E., Aguilera, A., Rodríguez, N., Fernández-Remolar, D., Gómez, F., Díaz, E., García-Moyano, A., Sanz, J.L., Amils, R., Microbial ecology of Río Tinto, a natural extreme acidic environment. Hydrometallurgy, 10, 329–333, 2010.
2.59. Gross, W., Ecophysiology of algae living in highly acidic environments. Hydrobiology, 433, 31–37, 2000.
2.60. Hallberg, K.B. and Johnson, D.B., Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol., 49, 37–84, 2001.
2.61. Johnson, D.B. and Hallberg, K.B., The microbiology of acidic mine waters. Res. Microbiol., 154, 466–473, 2003.
2.62. Johnson, D.B. and Hallberg, K.B., Acid mine drainage remediation options: A review. Sci. Total Environ., 338, 3–14, 2005.
2.63. Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Jr., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B. et al., Jarosite and hematite at Meridiani Planum from the Mössbauer spectrometer on the Opportunity rover. Science, 306, 1740–1745, 2005.
2.64. Klueglein, N. and Kappler, A., Abiotic oxidation of F(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 questioning the existence of enzymatic Fe(II) oxidation. Geobiology, 11, 180–190, 2013.
2.65. Klueglein, N., Zeitvogel, F., Stierhof, Y.D., Floetenmeyer, M., Konhauser, K.O., Kappler, A., Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl. Environ. Microbiol., 80, 1051–1061, 2014.
2.66. Kotsyurbenko, O.R., Friedrich, M.W., Simankova, M.V., Nozhenvnikova, A.N., Golyshin, P.N., Timmis, K.N., Conrad, R., Shift from acetoclastic to H2 dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl. Environ. Microbiol., 73, 2344–2348, 2007.
2.67. Leandro, T., da Costa, M.S., Sanz, J.L., Amils, R., Complete genome of Tessaracoccus sp. strain T2.5-30 isolated from 139.5 m deep on the subsurface of the Iberian Pyrite Belt. Genome Announc. J., 5, 17, #e00238–17, 2017.
2.68. Leblanc, M., Morales, J.A., Borrego, J., Elbaz-Poulichet, F., A 4500-year-old mining pollution in Southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol., 95, 655–662, 2000.
2.69. Leistel, J.M., Marcoux, E., Theiblemont, D., Quesada, C., Sánchez, A., Almodóvar, G.R., Pascual, E., Saez, R., The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner. Deposita, 33, 2–30, 1998.
2.70. Lescuyer, J.L., Leistel, J.M., Mrcoux, E., Milési, J.P., Thiéblemont, D., Late Devonian-Early Carboniferous peak sulphide mineralization in the Western Hercynides. Miner. Deposita, 33, 208–220, 1998.
2.71. Lichtenberg, K.A., Arvidson, R.E., Morris, R.V., Murchie, S.L., Bishop, J.L., Fernandez Remolar, D., Glotch, T.D., Noe Dobrea, E., Mustard, J.F., Andrews-Hanna, J. et al., Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J. Geophys. Res.: Planets, 115, ED00D17, 2010.
2.72. López-Archilla, A.I., Marín, I., Amils, R., Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microb. Ecol., 41, 20–35, 2001.
2.73. López-Archilla, A.I., González, A.E., Terrón, M.C., Amils, R., Diversity and ecological relationships of the fungal populations of an acidic river of Southwestern Spain: The Tinto River. Can. J. Microbiol., 50, 923–934, 2005.
2.74. Lu, S., Gischkat, S., Reiche, M., Akob, D.M., Hallberg, K.B., Küsel, K., Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl. Environ. Microbiol., 76, 8174–8183, 2010.
2.75. Malki, M., González-Toril, E., Sanz, J.L., Gómez, F., Rodríguez, N., Amils, R., Importance of the iron cycle in biohydrometallurgy. Hydrometallurgy, 83, 223–228, 2006.
2.76. Margulis, L., Mazur, P., Barghoorn, E.S., Halvorson, H.O., Jukes, T.H.J., Kaplan, I.R., The Viking Mission: Implications for life in the Vallis Marineris area. Science, 305, 78–81, 1979.
2.77. Martin, J.H., Glacial-interglacial CO2 change: The iron hypothesis. Paleooceanography, 5, 1–13, 1990.
2.78. Michalski, J.R., Dobrea, E.Z.N., Niles, P.B., Cuadros, J., Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun., 8, e15978, 2017.
2.79. Milliken, R.E., Swayze, G.A., Arvidson, R.E., Bishop, J.L., Clark, R.N., Ehlmann, B.L., Green, R.O., Grotzinger, J.P., Morris, R.V., Murchie, S.L. et al., Opaline silica in young deposits on Mars. Geology, 36, 847–850, 2008.
2.80. McLennan, S.M., Bell, J.F., III, Calvin, W.M., Christensen, P.R., Clark, B.C., de Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R. et al., Provenance and diagenesis of the Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240, 95–121, 2005.
2.81. Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A., Smith, M.D., Strong release of methane on Mars in Northen Summer 2003. Science, 323, 1041–1045, 2009.
2.82. Oggerin, M., Tornos, F., Rodríguez, N., del Moral, C., Sánchez-Román, M., Amils, R., Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ. Microbiol., 15, 2228–2237, 2013.
2.83. Oggerin, M., Rodríguez, N., del Moral, C., Amils, R., Fungal jarosite biomineralization in Río Tinto, a process of biohydrometallurgical interest. Res. Microbiol., 165, 719–725, 2014.
2.84. Oggerin, M., Tornos, F., Rodríguez, N., Amils, R., Fungal iron biomineralization in Río Tinto. Minerals, 6, 2, 37, 2016.
2.85. Parro, V., Fernández-Remolar, D., Rodríguez-Manfredi, J.A., Cruz-Gil, P., Rivas, L.A., RuizBermejo, M., Moreno-Paz, M., García-Villadangos, M., Gómez-Ortiz, D., Blanco-López, Y. et al., Classification of modern and old Río Tinto sedimentary deposits through the bio-molecular record using a Life Marker Biochip: Implications for detecting Life on Mars. Astrobiology, 11, 29–44, 2011.
2.86. Pedersen, K., Exploration of deep intraterrestrial microbial life: Current perspectives. FEMS Microbiol. Lett., 185, 9–16, 2000.
2.87. Puente-Sánchez, F., Moreno-Paz, M., Rivas, L.A., Cruz-Gil, P., García-Villadangos, M., Gómez, M.J., Postigo, M., Garrido, P., González-Toril, E., Briones, C. et al., Deep subsurface sulfate reduction and methanogenesis in the Iberian Pyrite Belt revealed through geochemistry and molecular biomarkers. Geobiology, 12, 34–47, 2014.
2.88. Puente-Sánchez, F., Sánchez-Román, M., Amils, R., Parro, V., Tessaracoccus lapidicaptus sp. nov., a novel actinobacterium isolated from the deep subsurface of the Iberian Pyrite Belt (Huelva, Spain). Int. J. Syst. Evol. Microbiol., 64, 3546–3552, 2014.
2.89. Preston, L., Shuster, J., Fernández-Remolar, D., Banerjee, N., Osinski, G.R., Southam, G., The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology, 9, 233–249, 2011.
2.90. Pronk, J.T., Bruyn, J.C., Bos, P., Kuenen, J.G., Anaerobic growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 58, 2227–2230, 1992.
2.91. Rawlings, D.E., Heavy metal mining using microbes. Annu. Rev. Microbiol., 56, 65–91, 2002.
2.92. Rawlings, D.E., Characteristics and adptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact., 4, 13–28, 2005.
2.93. Rieder, R., Gellert, R., Anderson, R.C., Brückner, J., Clark, B.C., Dreibus, G., Economou, T., Klingelhöfer, G., Lugmair, G.W., Ming, D.W. et al., Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science, 306, 1746–1749, 2004.
2.94. Sánchez-Andrea, I., Rodríguez, N., Amils, R., Sanz, J.L., Microbial diversity in anaerobic sediments at Río Tinto, a naturally acidic environment with a high heavy metal content. Appl. Environ. Microbiol., 77, 17, 6085–6093, 2011.
2.95. Sánchez-Andrea, I., Rojas-Ojeda, P., Amils, R., Sanz, J.L., Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles, 16, 829–839, 2012.
2.96. Sánchez-Andrea, I., Stams, A.J.M., Amils, R., Sanz, J.L., Enrichment and isolation of acido-philic sulfate-reducing bacteria from Tinto River sediments. Environ. Microbiol. Rep., 5, 5, 672–678, 2013.
2.97. Sánchez-Román, M., Fernández-Remolar, D., Amils, R., Sánchez-Navas, A., Schmid, T., San Martíon-Uriz, P., Rodríguez, N., McKenzie, J.A., Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions. Sci. Rep., 4, e4757, 2014.
2.98. Sand, W., Gehrke, T., Hallmann, R., Schippers, A., Sulfur chemistry, biofilm and the (in) direct attack mechanisms. A critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol., 43, 961–966, 1995.
2.99. Sand, W., Gehrke, T., Jozsa, P.G., Schippers, A., Biochemistry of bacterial leaching. Direct vs indirect bioleaching. Hydrometallurgy, 59, 159–175, 2001.
2.100. Sanz, J.L., Rodríguez, N., Díaz, E., Amils, R., Methanogenesis in the sediments of Río Tinto, an extreme acidic environment. Environ. Microbiol., 13, 8, 2336–2341, 2011.
2.101. Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell, J.F., III, Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E. et al., In situ evidence for an ancient aqueous environment in Meridiani Planum, Mars. Science, 306, 1709–1714, 2004.
2.102. Taconi, K.A., Zappi, M.E., French, W.T., Brown, L.R., Methanogenesis under acidic pH conditions in a semy-continuous reactor system. Bioresour. Technol., 99, 8075–8081, 2008.
2.103. Vizzioli, C., Bacterial diversity associated to the tidal area of Río Tinto. PhD thesis, Universidad Autónoma de Madrid, Spain, 2017.
2.104. Wächtershäuser, G., Groundworks for an evolutionary biochemistry: The iron Sulphur world. Prog. Biophys. Mol. Biol., 58, 85–201, 1992.
2.105. Webster, C.R., Mahaffy, P.R., Atreya, S.K., Flesch, G.J., Mischna, M.A., Meslin, P.-Y., Farley, K.A., Conrad, P.G., Christensen, L.E., Pavlov, A.A. et al., Mars methane detection and variability at Gale crater. Science, 347, 415–417, 2015.
2.106. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., Schink, B., Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 162, 834–836, 1993.
2.107. Wiegel, J., Ljungdahl, L.G., Demain, A.L., The importance of thermophilic bacteria in biotechnology. Crit. Rev. Biotechnol., 3, 39–108, 1985.
2.108. Woese, C.R. and Fox, G.E., Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA, 77, 5088–5090, 1977.
2.109. Woese, C.R., Kandler, O., Wheelis, M.L., Toward a natural system of organisms: Proposal for the domains archaea, bacteria and eukarya. Proc. Natl. Acad. Sci. USA, 87, 4576–4579, 1990.
2.110. Yan, R., Kappler, A., Peiffer, S., Interference of nitrite with pyrite under acidic conditions: Implications for studies of chemolithotrophic denitrification. Environ. Sci. Technol., 49, 11403–11410, 2015.
2.111. Zhang, G., Dong, H., Xu, Z., Zhao, D., Zhang, C., Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China. Appl. Environ. Microbiol., 71, 3213–3227, 2005.
2.112. Zolotov, M. and Shock, E., Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at the Meridiani Planum, Mars. Geophys. Res. Lett., 32, L21203, 2005.
1 * Corresponding author: ramils@cbm.csic.es
2 Ricardo Amils: https://www.researchgate.net/profile/Ricardo_Amils, http://www.cbm.uam.es/ramils, https://orcid.org/0000-0002-7560-1033
3 David Fernández-Remolar: https://www.researchgate.net/profile/David_Fernandez-Remolar, https://scholar.google.es/citations?user=NDpdhrIAAAAJ&hl=es, https://cab.academia.edu/DavidFernandezRemolar