Читать книгу Fog Computing - Группа авторов - Страница 20
1.3.3 Marine Fog
ОглавлениеIntegrating IoT to existing legacy marine systems can provide rapid information exchange. Initially, classic marine communication systems utilize VHF radio to obtain ship identification, ship location, position, destination, moving speed, and so forth. Unfortunately, VHF can provide only 9.6 kbps, which is insufficient to provide marine sensory data streaming [28]. Alternatively, ships can utilize the new satellite Internet to deliver their data, which is capable of achieving 432 kbps. However, satellite communication is not affordable for small and medium-size businesses since a simple voice service can cost USD $13.75 per minute [28]. In order to overcome the issue, researchers have introduced fog computing and networking-integrated marine communication systems for the Internet of marine t hings (IoMaT) [4]. Here, we term such a fog computing model Marine Fog.
By integrating a virtualization or containerization technology-based fog server with onboard equipment, vessels are capable of realizing a software-defined network (SDN) that allows the vessels to (re)configure a message routing path dynamically. Afterwards, by utilizing Marine Fog–based SDN mechanism, vessels can easily establish an ad hoc–based DTN, which caches data at the onboard Marine Fog node until the vessel encounters the next Marine Fog node, for delivering sensory data from the data source to the base stations toward relaying the data to the cloud. Moreover, an advanced Marine Fog node within the network may also perform data preprocessing in order to further reduce the transmission latency [29] (Figure 1.2).
Existing wireless sensor network (WSN) architecture in marine monitoring uses sea buoys as sink nodes, capable of communicating with nearby sensor nodes (other buoys, vessels) directly (e.g. using ZigBee), as well as via the cellular Internet network [30]. By introducing the previously mentioned virtualization, the WSN architecture could be extended to be used in Marine Fog. However, this approach amplifies the need for energy-harvesting technology at the buoys.
Figure 1.2 Maritime fog computing examples.