Читать книгу Fog Computing - Группа авторов - Страница 57

1.6.3 Challenges in Unmanned Aerial Vehicular Fog Computing

Оглавление

Current works in UAV mFog [32, 52] were focusing on the underlying system design and communication mechanisms. Although UAV-Fog nodes have many potential applications due to the features in terms of fast deployment, scalability, flexibility, and cost-efficiency [31], integrating UAV-Fog nodes to pervasive computing systems or IoT systems raises many new challenges besides the underlying communication mechanisms. Specifically, existing works have not fully addressed the requirements for both tenant and provider. For example, although an existing work [63] has proposed schemes that enable UAV-Fog nodes to perform data-driven service handover, which transfers the client data from one UAV-Fog node to another, this scheme was designed for a domain-specific application in which the author assumes the system has preinstalled the application to all the UAV-Fog nodes and hence, at runtime, the UAV-Fog nodes need only to transfer the client data in order to support the mobility. On the other hand, considering the multitenancy fog service model, preinstalling applications to the UAV-Fog nodes for all the tenants will cause a high burden to the storage size, especially when the application involves large size files. Therefore, UAV-fog nodes require the mechanism that supports rapid and dynamic application management in terms of task allocation/placement and task migration.

Fog Computing

Подняться наверх