Читать книгу Fog Computing - Группа авторов - Страница 90
3.2.2 Data Discrepancy in Real-world Settings
ОглавлениеThe performance of a DNN model is heavily dependent on its training data, which is supposed to share the same or a similar distribution with the potential test data. Unfortunately, in real-world settings, there can be a considerable discrepancy between the training data and the test data. Such discrepancy can be caused by variation in sensor hardware of edge devices as well as various noisy factors in the real world that degrade the quality of the test data. For example, the quality of images taken in real-world settings can be degraded by factors such as illumination, shading, blurriness, and undistinguishable background [17] (see Figure 3.1 as an example). Speech data sampled in noisy places such as busy restaurants can be contaminated by voices from surround people. The discrepancy between training and test data could degrade the performance of DNN models, which becomes a challenging problem.
To address this challenge, we envision that the opportunities lie at exploring data augmentation techniques as well as designing noise-robust loss functions. Specifically, to ensure the robustness of DNN models in real-world settings, a large volume of training data that contain significant variations is needed. Unfortunately, collecting such a large volume of diverse data that cover all types of variations and noise factors is extremely time consuming. One effective technique to overcome this dilemma is data augmentation. Data augmentation techniques generate variations that mimic the variations occurred in the real-world settings. By using the large amount of newly generated augmented data as part of the training data, the discrepancy between training and test data is minimized. As a result, the trained DNN models become more robust to the various noisy factors in the real world. A technique that complements data augmentation is to design loss functions that are robust to discrepancy between the training data and the test data. Examples of such noise-robust loss functions include triplet loss [18] and variational autoencoder [19]. These noise-robust loss functions are able to enforce a DNN model to learn features that are invariant to various noises that degrade the quality of test data even if the training data and test data do not share a similar distribution.
Figure 3.1 Illustration of differences between training and test images of the same pills under five different scenarios [17]. For each scenario, the image on the left is the training image; and the image on the right is the test image of the same pill. Due to the deterioration caused by a variety of real-world noisiness such as shading, blur, illumination, and background, training image and test image of the same pill look very different. (a) Size variation, (b) Illumination, (c) Shading, (d) Blur, (e) Undistinguishable background.