Читать книгу Fog Computing - Группа авторов - Страница 92
3.2.4 Heterogeneity in Sensor Data
ОглавлениеMany edge devices are equipped with more than one onboard sensor. For example, a smartphone has a global positioning system (GPS) sensor to track geographical locations, an accelerometer to capture physical movements, a light sensor to measure ambient light levels, a touchscreen sensor to monitor users' interactions with their phones, a microphone to collect audio information, and a camera to capture images and videos. Data obtained by these sensors are by nature heterogeneous and are diverse in format, dimensions, sampling rates, and scales. How to take the data heterogeneity into consideration to build DNN models and to effectively integrate the heterogeneous sensor data as inputs for DNN models represents a significant challenge.
To address this challenge, one opportunity lies at building a multimodal deep learning model that takes data from different sensing modalities as its inputs. For example, [21] proposed a multimodal DNN model that uses restricted Boltzmann machine (RBM) for activity recognition. Similarly, [22] also proposed a multimodal DNN model for smartwatch-based activity recognition. Besides building multimodal DNN models, another opportunity lies in combining information from heterogeneous sensor data extracted at different dimensions and scales. As an example, [23] proposed a multiresolution deep embedding approach for processing heterogeneous data at different dimensions. [24] proposed an integrated convolutional and recurrent neural networks (RNNs) for processing heterogeneous data at different scales.