Читать книгу Genome Engineering for Crop Improvement - Группа авторов - Страница 60
References
Оглавление1 Altpeter, F., Vasil, V., Srivastava, V., and Vasil, I.K. (1996). Integration and expression of the high‐molecular‐eight gluten in sub unit 1Ax1 gene in to wheat. Nature Biotechnology 14: 1155–1159.
2 Alvarez, M.L., Omez, M.G., Marıa, J. et al. (2001). Analysis of dough functionality of flours from transgenic wheat. Molecular Breeding 8: 103–108.
3 Anjum, F.M., Khan, M.R., Din, A. et al. (2007). Wheat gluten:high molecular weight glutenin subunits, structure, genetics, and relation to dough elasticity. Journal of Food Science 72: 56–63.
4 Arpat, A., Waugh, M., Sullivan, J.P. et al. (2004). Functional genomics of cell elongation in developing cotton fibers. Plant Molecular Biology 54: 911–929.
5 Bai, W.Q., Xiao, Y.H., Zhao, J. et al. (2014). Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers. PLoS One 9: 96537.
6 Barrangou, R., Fremaux, C., Deveau, H. et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.
7 Bhullar, N.K. and Gruissem, W. (2013). Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnology Advances 31: 50–57.
8 Borg, S., Brinch‐Pedersen, H., Tauris, B. et al. (2012). Wheat ferritins: improving the iron content of the wheat grain. Journal of Cereal Science 56: 204–213.
9 Borisjuk, N., Kishchenko, O., Eliby, S. et al. (2019). Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing. BioMed Research International 2019: 6216304.
10 Bortesi, L. and Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33: 41–52.
11 Brill, E., Van, T.M., White, R.G. et al. (2011). A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiology 157: 40–54.
12 Butt, H., Jamil, M., Wang, J.Y. et al. (2018). Engineering plant architecture via CRISPR/Cas9‐mediated alteration of strigolactone biosynthesis. BMC Plant Biology 18: 1–9.
13 Cai, Y., Chen, L., Liu, X. et al. (2015). CRISPR/Cas9‐mediated genome editing in soybean hairy roots. PLoS One 10: e0136064.
14 Cai, Y., Chen, L., Liu, X. et al. (2018). CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnology Journal 16: 176–185.
15 Cakmak, I., Ozkan, H., Braun, H.J. et al. (2000). Zinc and iron concentrations in seeds of wild, primitive, and modern wheat. Food and Nutrition Bulletin 21: 401–403.
16 Capecchi, M.R. (1980). High effciency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–488.
17 Chahal, G.S. and Gosal, S.S. (2002). Principles and Procedures of Plant Breeding: Biotechnological and Conventional Approaches. Oxford, UK: Alpha Science Int'l Ltd.
18 Chen, P., Shen, Z., Ming, L. et al. (2018). Genetic basis of variation in Rice seed storage protein (albumin, globulin, Prolamin, and Glutelin) content revealed by genome‐wide association analysis. Frontiers in Plant Science 9: 612.
19 Chira, S., Gulei, D., Hajitou, A. et al. (2017). CRISPR/Cas9: transcending the reality of genome editing. Molecular Therapy – Nucleic Acids 7: 211–222.
20 Cho, S.W., Kim, S., Kim, Y. et al. (2014). Analysis of off‐target effects of CRISPR/Cas‐derived RNA‐guided endonucleases and nickases. Genome Research 24: 132–141.
21 Connorton, J.M., Jones, E.R., Rodríguez‐Ramiro, I. et al. (2017). Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiology 174: 2434–2444.
22 Crossa, J., Pérez‐Rodríguez, P., Cuevas, J. et al. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science 22: 961–975.
23 Cruz, D.N. and Khush, G.S. (2000). Rice grain quality evaluation procedures. In: Aromatic Rices (eds. R.K. Singh, U.S. Singh and G.S. Khush), 292. New Delhi: Mohan Primlani for Oxford & IBH Publishing Co. Pvt. Ltd.
24 Deltcheva, E., Chylinski, K., Sharma, C.M. et al. (2011). CRISPR RNA maturation by trans‐encoded small RNA and host factor RNase III. Nature 471: 602.
25 Deng, F., Tu, L., Tan, J. et al. (2012). GbPDF1 is involved in cotton fiber initiation via the core cis‐element HDZIP2ATATHB2. Plant Physiology 158: 890–904.
26 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nature Biotechnology 34: 184.
27 Du, H., Zeng, X., Zhao, M. et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217: 90–97.
28 Fang, Y. and Tyler, B.M. (2016). Effcient disruption and replacement of an effector gene in the OomycetePhytophthorasojae using CRISPR/Cas9. Molecular Plant Pathology 17: 127–139.
29 FAO (Food And Agriculture Organization of The United Nations) Statistics (2014‐15) (available at http://www.fao.org/faostat/en/#data/QC).
30 FAO (Food And Agriculture Organization of The United Nations) (2019‐20).Commodity markets: Rice. http://www.fao.org/economic/est/est‐commodities/rice/en/ (accessed 17 July 2020.
31 FAO (Food And Agriculture Organization of The United Nations) Statistics (2017‐18) (available at http://www.fao.org/faostat/en/#data/QC).
32 Feng, C., Yuan, J., Wang, R. et al. (2016). Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics 43: 37–43.
33 Ferguson, D.O. and Alt, F.W. (2001). DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20: 5572.
34 Ferrero, A. (2004). Constraints and opportunities for the sustainable development of rice‐based production systems in Europe.The International Conference on Sustainable Rice Systems, Rome.
35 Fiaz, S., Ahmad, S., Noor, M.A. et al. (2019). Applications of the CRISPR/Cas9 system for Rice grain quality improvement: perspectives and opportunities. International Journal of Molecular Sciences 20: 888.
36 Fiaz, S., Jiao, G., Sheng, Z. et al. (2019). Analysis of genomic regions governing cooking and eating quality traits using a recombinant inbred population in Rice (Oryza sativa L.). International Journal of Agriculture and Biology 22: 611–619.
37 Gil‐Humanes, J., Pistón, F., Barro, F., and Rosell, C.M. (2014). The shutdown of celiac disease‐related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over‐mixing. PLoS One 9 (3): e91931.
38 Godfray, H.C.J., Beddington, J.R., Crute, I.R. et al. (2010). Food security: the challenge of feeding 9 billion people. Science 327: 812–818.
39 Guan, X., Song, Q., and Chen, Z.J. (2014). Polyploidy and small RNA regulation of cotton fiber development. Trends in Plant Science 19: 516–528.
40 Hao, J., Tu, L., Hu, H. et al. (2012). GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. Journal of Experimental Botany 63: 6267–6281.
41 Harmer, S., Orford, S., and Timmis, J. (2002). Characterisation of six a‐expansin genes in Gossypium hirsutum (upland cotton). Molecular Genetics and Genomics 268: 1–9.
42 Hartung, F. and Schiemann, J. (2014). Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant Journal 78: 742–752.
43 Heigwer, F., Kerr, G., and Boutros, M. (2014). E‐CRISP: fast CRISPR target site identification. Nature Methods 11: 122.
44 Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. (2013). DNA targeting specificity of RNA‐guided Cas9 nucleases. Nature Biotechnology 31: 827.
45 Calyxt Inc (2019). First Commercial Sale of Calyxt High Oleic Soybean Oil. Minneapolis‐St. Paul: Calyxt Inc.
46 Innes, R.W., Ameline‐Torregrosa, C., Ashfield, T. et al. (2008). Differential accumulation of retroelements and diversification of NB‐LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiology 148: 1740–1759.
47 Ishino, Y., Shinagawa, H., Makino, K. et al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169: 5429–5433.
48 Jasin, M. (1996). Genetic manipulation of genomes with rare‐cutting donucleases. Trends in Genetics 12: 224–228.
49 Jiang, Y., Guo, W., Zhu, H. et al. (2012). Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnology Journal 10: 301–312.
50 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.
51 John, M.E. and Crow, L.J. (1992). Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proceedings of the National Academy of Sciences 89: 5769–5773.
52 Jones, J.D., Witek, K., Verweij, W. et al. (2014). Elevating crop disease resistance with cloned genes. Philosophical Transactions of the Royal Society: Biological Sciences 369: 20130087.
53 Kang, G., Xu, W., Liu, G. et al. (2013). Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum L.) endosperm. Genome 56: 115–122.
54 Kim, H.J., Tang, Y., Moon, H.S. et al. (2013). Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genomics 14: 889.
55 Kim, M., Song, J.T., Bilyeu, K.D., and Lee, J.D. (2015). A new low linolenic acid allele of GmFAD3A gene in soybean PE1690. Molecular Breeding 35: 155.
56 Komor, A.C., Kim, Y.B., Packer, M.S. et al. (2016). Programmable editing of a target base in genomic DNA without doubles tranded DNA cleavage. Nature 533: 420.
57 Kulkarni, K.P., Patil, G., Valliyodan, B. et al. (2018). Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome 61: 217–222.
58 Lau, W.C., Rafii, M.Y., Ismail, M.R. et al. (2015). Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Frontiers in Plant Science 6: 832.
59 Li, J., Xiao, J., Grandillo, S. et al. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (Oryza sativa L.) and African (Oryzaglaberrima S.) rice. Genome 47: 697–704.
60 Li, S., Li, J., Wang, N. et al. (2007). Inheritance and expression of copies of transgenes 1Dx5 and 1Ax1 in elite wheat (Triticumaestivum L.) varieties transferred from transgenic wheat through conventional crossing. ActaBiochimicaetBiophysicaSinica 39: 377–383.
61 Li, D.D., Ruan, X.M., Zhang, J. et al. (2013). Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fiber development. New Phytology 199: 695–707.
62 Li, Z., Liu, Z.B., Xing, A. et al. (2015). Cas9‐guide RNA directed genome editing in soybean. Plant Physiology 169: 960–970.
63 Li, Q., Li, L., Liu, Y. et al. (2017). Influence of TaGW2‐6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Science 263: 226–235.
64 Li, J., Zhang, H., Si, X. et al. (2017). Generation of thermosensitive male‐sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics 44: 465.
65 Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63–68.
66 Liang, Z., Chen, K., Li, T. et al. (2017). Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications 8: 1–5.
67 Liu, G., Wu, Y., Xu, M. et al. (2016). Virus‐induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. International Journal of Molecular Sciences 17: 1557.
68 Liu, J., Wu, X., Yao, X. et al. (2018). Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences 115: 11327–11332.
69 Lloyd, A.H., Wang, D., and Timmis, J.N. (2012). Single molecule PCR reveals similar patterns of non‐homologous DSB repair in tobacco and Arabidopsis. PLoSOne 7 (2): e32255.
70 Loguercio, L.L., Zhang, J.Q., and Wilkins, T.A. (1999). Differential regulation of six novel MYB‐domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Molecular Genomics and Genetics 261: 660–671.
71 Lou, J., Chen, L., Yue, G. et al. (2009). QTL mapping of grain quality traits in rice. Journal of Cereal Science 50: 145–151.
72 Ma, X., Zhang, Q., Zhu, Q. et al. (2015). A robust CRISPR/Cas9 system for convenient, high‐efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8: 1274–1284.
73 Machado, A., Wu, Y., Yang, Y. et al. (2009). The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant Journal 59: 52–62.
74 Manik, N. and Ravikesavan, R. (2009). Emerging trends in enhancement of cotton fiber productivity and quality using functional genomics tools. Biotechnology and Molecular Biology Reviews 4: 11–28.
75 Meenu, M. and Xu, B. (2018). A critical review on anti‐diabetic and anti‐obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition 59 (18): 3019–3031.
76 Montague, T.G., Cruz, J.M., Gagnon, J.A. et al. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42: 401–407.
77 Morgante, M. (2006). Plant genome organisation and diversity: the year of the junk. Current Opinion in Biotechnology 17: 168–173.
78 Nalam, V.J., Alam, S., Keereetaweep, J. et al. (2015). Facilitation of Fusariumgraminearum infection by 9‐lipoxygenases in Arabidopsis and wheat. Molecular Plant‐Microbe Interactions 28: 1142–1152.
79 Nester, E.W. (2014). Agrobacterium: nature's genetic engineer. Frontiers in Plant Science 5: 730.
80 Nordin, Y. and Lantbruksakademien, K.S.O. (2008). Golden Rice and Other Biofortified Food Crops for Developing Countries: Challenges and Potential. Rome, Italy: FAO.
81 Pacher, M. and Puchta, H. (2017). From classical mutagenesis to nuclease based breeding directing natural DNA repair for a natural end‐product. Plant Journal 90: 819–833.
82 Payne, P.I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread‐making quality. Annual Review of Plant Physiology and Plant Molecular Biology 38: 141–153.
83 Pegoraro, C., da Mertz, L.M., Maia, L.C. et al. (2011). Importance of heat shock proteins in maize. Journal of Crop Science and Biotechnology 14: 85–95.
84 Peng, B., Kong, H., Li, Y. et al. (2014). OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications 5: 4847.
85 Pham, A.T., Lee, J.D., Shannon, J.G., and Bilyeu, K.D. (2011). A novel FAD2‐1 a allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theoretical and Applied Genetics 123: 793–802.
86 Pliatsika, V. and Rigoutsos, I. (2015). Off‐spotter: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biology Direct 10: 4.
87 Pourcel, C., Salvignol, G., and Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653–663.
88 Prykhozhij, S.V., Rajan, V., Gaston, D., and Berman, J.N. (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10: e0119372.
89 Puchta, H. (2005). The repair of double‐strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56: 1–14.
90 Qi, W., Zhu, T., Tian, Z. et al. (2016). High‐efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA processing system‐based strategy in maize. BMC Biotechnology 16: 58.
91 Qin, Y.M. and Zhu, Y.X. (2011). How cotton fibers elongate: a tale of linear cell growth mode. Current Opinion in Plant Biology 14: 106–111.
92 Quétier, F. (2016). The CRISPR‐Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Science 242: 65–76.
93 Regina, A., Bird, A., Topping, D. et al. (2006). High‐amylose wheat generated by RNA interference improves indices of large‐bowel health in rats. Proceedings of the National Academy of Sciences 103: 3546–3551.
94 Ruan, Y. (2007). Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single‐celled cotton fibre. Functional Plant Biology 34: 1–10.
95 Sabouri, A., Rabiei, B., Toorchi, M. et al. (2012). Mapping quantitative trait loci (QTL) associated with cooking quality in rice (Oryza sativa. L). Australian Journal of Crop Science 6: 808.
96 Sánchez‐León, S., Gil‐Humanes, J., Ozuna, C.V. et al. (2018). Low‐gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16: 902–910.
97 Schaart, J.G., Van De Wiel, C.C.M., Lotz, L.A.P., and Smulders, M.J.M. (2016). Opportunities for products of new plant breeding techniques. Trends in Plant Science 21: 438–449.
98 Scheben, A., Wolter, F., Batley, J. et al. (2017). Towards CRISPR/Cas crops–bringing together and genome editing. New Phytology 216: 682–698.
99 Scherf, K.A., Koehler, P., and Wieser, H. (2016). Gluten and wheat sensitivities an overview. Journal of Cereal Science 67: 2–11.
100 Schmutz, J., Cannon, S.B., Schlueter, J. et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183.
101 Schnable, P.S., Ware, D., Fulton, R.S. et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.
102 Schubert, D. and Williams, D. (2006). Cisgenic; as a product designation. Nature Biotechnology 24: 1327.
103 Sestili, F., Janni, M., Doherty, A. et al. (2010). Increasing the amylose content of durum wheat through silencing of the SBEIIagenes. BMC Plant Biology 10: 144.
104 Shan, Q., Wang, Y., Li, J., and Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9: 2395–2410.
105 Shan, Q., Wang, Y., Li, J., and Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9: 2395.
106 Shen, L., Li, J., Fu, Y. et al. (2017). Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system. Chinese Journal of Rice Science 31: 223–231.
107 Shewry, P.R. and Halford, N.G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany 53: 947–958.
108 Shi, J., Gao, H., Wang, H. et al. (2017). ARGOS8 variants generated by CRISPR–Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15: 207–216.
109 Shu, Q.Y., Forster, B., and Nakagawa, H. (2012). Principles and Applications of Plant Mutation Breeding, in Plant Mutation Breeding and Biotechnology (eds. Q.Y. Shu, B. Forster and H. Nakagawa), 301–326. Wallingford: CABI.
110 Si, L., Chen, J., Huang, X. et al. (2016). OsSPL13 controls grain size in cultivated rice. Nature Genetics 48: 447–456.
111 Sikora, P., Chawade, A., Larsson, M. et al. (2011). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics 2011: 314829.
112 Smidansky, E.D., Meyer, F.D., Blakeslee, B. et al. (2007). Expression of a modified ADP‐glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225: 965–976.
113 Splitter, J. (2019). The Latest Gene‐Edited Food Is a Soybean Oil that Comes with Zero Trans Fats. New York: Forbes.
114 Stemmer, M., Thumberger, T., Del Sol Keyer, M. et al. (2015). CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10: e0124633.
115 Stewart, C.N., Adang, M.J., All, J.N. et al. (1996). Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic bacillus thuringiensiscryIAc gene. Plant Physiology 112: 121–129.
116 Sui, X., Zhao, Y., Wang, S. et al. (2012). Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. Journal of Agriculture and Biotechnology 20: 766–773.
117 Sundström, J.F., Albihn, A., Boqvist, S. et al. (2014). Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases–a risk analysis in three economic and climate settings. Food Security 6: 201–215.
118 Suo, J., Liang, X., Pu, L. et al. (2003). Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochimtry and Biophysics Acta 1630: 25–34.
119 Tan, J., Tu, L., Deng, F. et al. (2012). Exogenous jasmonic acid inhibits cotton fiber elongation. Journal of Plant Growth Regulation 31: 599–605.
120 Tang, F., Yang, S., Liu, J., and Zhu, H. (2016). Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin‐like protein but not the one previously reported. Plant Physiology 170: 26–32.
121 Terada, R., Nakajima, M., Isshiki, M. et al. (2000). Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice. Plant Cell Physiology 41: 881–888.
122 United Nations, Department of Economic and Social Affairs, Population Division (2017). The Impact of Population Momentum on Future Population Growth. Population Facts. https://www.un.org/en/development/desa/population/publications/factsheets/index.shtml (accessed 17 July 2020.
123 Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R. (2013). RNA‐guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics 3: 2233–2238.
124 Waltz, E. (2018). With a free pass, CRISPR‐edited plants reach market in record time. Nature Biotechnology 36: 6–7.
125 Wang, S., Li, S., Liu, Q. et al. (2015). The OsSPL16‐GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics 47: 949–954.
126 Wang, W., Pan, Q., He, F. et al. (2018). Transgenerational CRISPR‐Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. The CRISPR Journal 1: 65–74.
127 Wang, W., Simmonds, J., Pan, Q. et al. (2018). Gene editing and mutagenesis reveal inter‐cultivar differences and additivity in the contribution of TaGW2homoeologues to grain size and weight in wheat. Theoretical and Applied Genetics 131: 2463–2475.
128 Watanabe, S., Hideshima, R., Xia, Z. et al. (2009). Map‐based cloning of the gene associated with the soybean maturity locus E3. Genetics 182: 1251–1262.
129 Weichert, N., Saalbach, I., Weichert, H. et al. (2010). Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiology 152: 698–710.
130 Welch, R.M. and Graham, R.D. (1999). A new paradigm for world agriculture: meeting human needs. Productive, sustainable, nutritious. Field Crops Research 60: 1–10.
131 Wendel, J.F. and Cronn, R.C. (2003). Polyploidy and the evolutionary history of cotton. Advancement in Agronomy 78: 139–186.
132 Wenefrida, I., Utomo, H.S., Blanche, S.B., and Linscombe, S.D. (2009). Enhancing essential amino acids and health benefit components in grain crops for improved nutritional values. Recent Advances in DNA and Gene Sequences 3: 219–225.
133 Xiao, Y.H., Li, D.M., Yin, M.H. et al. (2010). Gibberellin 20‐oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. Journal of Plant Physiology 167: 829–837.
134 Xu, W.L., Zhang, D.J., Wu, Y.F. et al. (2013). Cotton PRP5 gene encoding a proline‐rich protein is involved in fiber development. Plant Molecular Biology 82: 353–365.
135 Yang, Z., Zhang, C., Yang, X. et al. (2014). PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytologist 203: 437–448.
136 Ye, X., Al‐Babili, S., Klöti, A. et al. (2000). Engineering the provitaminA (β‐carotene) biosynthetic pathway into (carotenoid‐free) rice endosperm. Science 287: 303–305.
137 Zhang, F., Liu, X., Zuo, K. et al. (2011). Molecular cloning and characterization of a novel Gossypium barbadense L. RAD‐like gene. Plant Molecular Biology Reporter 29: 324–333.
138 Zhang, G., Cheng, Z., Zhang, X. et al. (2011). Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch. Genome 54: 448–459.
139 Zhang, T., Hu, Y., Jiang, W. et al. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM‐1) provides a resource for fiber improvement. Nature Biotechnology 33: 531–537.
140 Zhang, Y., Liang, Z., Zong, Y. et al. (2016). Efficient and transgene‐free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7: 1–8.
141 Zhang, K., Raboanatahiry, N., Zhu, B., and Li, M. (2017). Progress in genome editing technology and its application in plants. Frontiers in Plant Science 8: 177.
142 Zhang, J., Zhang, H., Botella, J.R., and Zhu, J.K. (2018). Generation of new glutinous rice by CRISPR/Cas9‐targeted mutagenesis of the waxy gene in elite rice varieties. Journal of Integrative Plant Biology 60: 369–375.
143 Zhou, H., Liu, B., Weeks, D.P. et al. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research 42: 10903–10914.
144 Zhu, J., Song, N., Sun, S. et al. (2016). Efficiency and inheritance of targeted mutagenesis in maize using CRISPR–Cas9. Journal of Genetics and Genomics 43: 25–36.