Читать книгу The SAGE Encyclopedia of Stem Cell Research - Группа авторов - Страница 77

Оглавление

Alabama

Alabama

32

34

Alabama

A 2012 Gallup poll found Alabama the most conservative state in the United States, with more than half of those polled self-identifying as conservative. This ideological bent is reflected in the state’s 2014 Healthcare Rights of Conscience Act that gives Alabama health care providers the right to refuse to participate in abortions, human cloning, human embryonic stem cell research, and sterilizations if their objections are submitted in writing and placed on file prior to being asked. Paradoxically, Alabama is also the site of exciting stem cell research and the home of the second-largest biotechnical research park in the nation. Highlighting the work done with adult stem cells has allowed the state’s research institutions to demonstrate that the conservative majority can support stem cell research without violating their principles. The Alabama Medical Institute, an independent, privately funded nonprofit organization, is committed to raising funds for politically riskier work in regenerative medicine and embryonic stem cell research.

The University of Alabama at Birmingham (UAB) is the largest of the state’s seven research universities and the institution most heavily invested in stem cell research. Stem cell biology is a major division of UAB’s biochemistry and structural biology graduate program. Faculty members in the department have particular interests in stem cell self-renewal and lineage specification of adult and pluripotent stem cells. The stem cell biology group at UAB expanded in 2011 when the UAB Stem Cell Institute was established. Also in 2011, UAB acquired from SANYO (now Panasonic Healthcare) the first cell-processing workstation in the United States. The self-contained unit, which has been described as “a clean room in a box,” contains all the necessary equipment required to manufacture cells for cell therapy in a sterile environment.

The unit is used in the stem cell biology group by researchers such as Tim Townes, professor and chair of the department of biochemistry and molecular genetics. Townes developed the first practical animal model for sickle cell disease in 1997. A decade later, he and his team, in collaboration with researchers at the Massachusetts Institute of Technology, took skin cells from mice with sickle cell disease and converted the cells into induced pluripotent stem cells (iPS) and genetically corrected the sickle mutation. They then transformed the corrected iPS cells into bone marrow cells and transplanted them into the diseased mice and cured sickle cell disease in the mouse model.

Other researchers whose work has been enhanced by the cell-processing workstation include Lawrence Lamb, professor of medicine and director of the UAB cell therapy laboratory, and Fred Goldman, professor of pediatrics at UAB and director of the Lowder Blood and Marrow Transplant Program at the Children’s Hospital of Alabama. Lamb’s research has shown that gamma delta T cells, a small component of the immune system, when present in large numbers, will increase survival for patients with leukemia. Goldman’s research uses iPS cells for dyskeratosis, a rare progressive bone marrow failure syndrome, and other nonmalignant blood disorders.

Biotechnology in Alabama

With $4.87 billion in annual research and development expenditures in 2012, Alabama ranks 12th in the nation for research revenue in life sciences and biotechnology, behind both Georgia and North Carolina. Accelerate Alabama, an economic development plan unveiled in January 2012 by the Alabama Department of Commerce, targeted the biosciences industry as an area for growth. According to BioAlabama, in 2014 Alabama had 557 biotech companies providing more than 10,000 jobs with an average salary of $56,000. The city of Birmingham is the home of 122 biotechnology companies as well as the University of Alabama at Birmingham, which includes the main campus of the School of Medicine. UAB conducted nearly 1,500 clinical trials in 2012. Huntsville, home to the world’s fourth-largest research center and the National Space and Aeronautics Administration’s (NASA) Marshall Space Flight Center, is another center of biotechnology in the state.

In 1962, the city of Huntsville, with support from Brown Engineering and rocket pioneer Wernher von Braun, zoned 3,000 acres of land to serve as a research park. Cummings Research Park, with almost 3,500 acres and 285 companies—including aerospace, defense, biotechnology, software development, and information technology—is second only to the Research Triangle Park in North Carolina. HudsonAlpha, a nonprofit institute for biotechnology, anchors the 152-acre biotech campus within the park. The HudsonAlpha Institute for Biotechnology provides research space for the Genome Sequencing Center and Genomic Services Lab, as well as for tissue culture, cell culture, bioscience clean labs, and other projects. In 2012, researchers from HudsonAlpha and from Vanderbilt University identified a special population of intestinal stem cells that respond to damage and help prevent cancer.

In 2013, the Biomedical and Life Sciences team of the CFD Research Corporation, located at the HudsonAlpha Institute for Biotechnology, received a $1 million, two-year Department of Defense contract through the Defense Health Program to fund stem cell detection and sorting research. Kapil Pant, director of biomedical technology for the company, explained that researchers will use induced pluripotent stem cells as a starting point. The hope is that noninvasively determining the differentiation state of stem cells will be a step in using stem cells for advances in treatment of burns and wounds and to increase cell growth speed to treat spinal cord injuries and neurodegenerative disorders.

The T. J. Atchison Initiative and the Alabama Institute of Medicine

T. J. Atchison was a 21-year-old former high school football player from Chatom, Alabama, when he sustained a complete T-7 spinal cord injury in an automobile accident. In October 2010, he became Patient A at Atlanta’s Shepherd Center, the first person with a spinal cord injury to be injected with human embryonic stem cells. In November 2011, Geron, the company that developed the stem cell therapy, stopped funding for the research, although Atchison and 14 others who received the therapy continue to be followed by doctors and researchers. The findings have been inconclusive.

In 2012, the Alabama state legislature, with strong bipartisan support, passed the T. J. Atchison Initiative for Spinal Cord Injury Research and Funding, which appropriated $400,000 for UAB. The university created the T. J. Atchison Spinal Cord Injury Research Program to promote basic research on spinal cord injury and the T. J. Atchison Core Laboratories to conduct clinical research. Atchison created the T. J. Atchison Foundation to raise money to support the UAB programs.

In 2013, Roman Reed, a California stem cell activist who spearheaded the passage of the Roman Reed Spinal Cord Injury Research Act, which provides up to $11 million a year in funding for spinal cord injury research in that state, and Tory Williams, a writer and Atchison family friend, founded the Alabama Institute of Medicine (AIM). With investors from China and Switzerland and a goal of raising $10 million in three years, AIM identified its ambitious plans: AIM grants to support scientists engaged in stem cell research, a state-of-the-art, privately funded laboratory that would not be as affected by political views as state and federally funded research, and hospital space where regenerative medicine treatments can be administered. Less than a year after its founding, AIM received a $1 million donation from an anonymous Birmingham resident.

Wylene Rholetter

Auburn University

See Also: Adult Stem Cells: Overview; Mouse Models to Study Stem Cells; Spinal Cord Injury.

Further Readings

Berry, Lucy. “Huntsville’s CFDRC Developing Non-Invasive Stem Cell Analyzer Technology.” AL.com. http://www.al.com/business/index.ssf/2013/07/huntsvilles_cfdrc_wins_1_milli.html (Accessed May 2014).

Christensen, John. “Passion to Find a Cure.” Shepherd Center Spinal Column (Spring 2013). http://www.shepherdcentermagazine.org/spring-2013/passion-to-find-a-cure (Accessed May 2014).

“Sickle Cell Gene Therapy.” Birmingham Medical News (February 15, 2012). http://www.birminghammedicalnews.com/news.php?viewStory=1637 (Accessed May 2014).

The SAGE Encyclopedia of Stem Cell Research

Подняться наверх