Читать книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов - Страница 305

References

Оглавление

1 1 Phillips, J.C. (1979). Topology of covalent non‐crystalline solids I. J. Non Cryst. Solids 34: 153–181.

2 2 Zachariasen, W.H. (1932). The atomic arrangement in glass. J. Am. Chem. Soc. 54: 3841–3851.

3 3 Cooper, A.R. (1978). Zachariasen's rules, Madelung constant, and network topology. Phys. Chem. Glasses 19: 60–68.

4 4 Gupta, P.K. and Cooper, A.R. (1990). Topologically disordered networks of rigid polytopes. J. Non Cryst. Solids 123: 14–21.

5 5 Gupta, P.K. (1993). Rigidity, connectivity, and glass‐forming ability. J. Am. Ceram. Soc. 76: 1088–1095.

6 6 Gupta, P.K. (1999). Topologically disordered networks of rigid polytopes: applications to noncrystalline solids and constrained viscous sintering. In: Rigidity Theory and Applications (eds. M.F. Thorpe and P.M. Duxbury), 173–190. New York: Kluwer Academic.

7 7 Gupta, P.K. and Mauro, J.C. (2009). Composition dependence of glass transition temperature and fragility, I. a topological model incorporating temperature‐dependent constraints. J. Chem. Phys. 130: 094503.

8 8 Mauro, J.C., Gupta, P.K., and Loucks, R.J. (2009). Composition dependence of glass transition temperature and fragility, II. A topological model of alkali‐borate liquids. J. Chem. Phys. 130: 234503.

9 9 Bauchy, M. and Micaulaut, M. (2011). Atomic scale foundation of temperature‐dependent bonding constraints in network glasses and liquids. J. Non Cryst. Solids 357: 2530–2537.

10 10 Smedskjaer, M.M., Mauro, J.C., Youngman, R.E. et al. (2011). Topological principles of borosilicate glass chemistry. J. Phys. Chem. B 115: 12930–12946.

11 11 Phillips, J.C. (1982). The physics of glass. Phys. Today 35: 27–33.

12 12 Thorpe, M.F. (1983). Continuous deformations in random networks. J. Non Cryst. Solids 57: 355–370.

13 13 Naumis, G.G. and Romero‐Arias, J.R. (2010). The problem of glass formation and the low frequency vibrational modes anomalies. Rev. Mex. Fis. 56: 97–105.

14 14 Mauro, J.C. (2011). Topological constraint theory of glass. Ceramics Bull. 90: 31–37.

15 15 Salmon, P.S. (2007). Structure of liquids and glasses in the Ge‐Se binary system. J. Non Cryst. Solids 353: 2959–2974.

16 16 Loehman, R.E. (1985). Oxynitride glasses. Treatise Mat. Sci. Technol. 26: 119–149.

17 17 Narayan, R.A. and Zwanziger, J.W. (2003). The glass forming ability of tellurites: a rigid polytope approach. J. Non Cryst. Solids 316: 273–280.

18 18 Sung, Y.‐M. and Kwon, S.‐J. (1999). Glass‐forming ability and stability of calcium aluminate optical glasses. J. Mater. Sci. Lett. 18: 1267–1269.

19 19 Jahn, S. and Madden, P.A. (2007). Structure and dynamics in liquid alumina: simulations with an ab initio interaction potential. J. Non Cryst. Solids 353: 3500–3504.

20 20 Wright, A.C. (2015). My borate life: an enigmatic journey. Int. J. Appl. Glass Sci. 6: 45–63.

21 21 Thorpe, M.F., Jacobs, D.J., Chubynsky, M.V., and Phillips, J.C. (2000). Self organization in network glasses. J. Non Cryst. Solids 266–269: 859–866.

22 22 Boolchand, P., Gunasekera, K., and Bhosle, S. (2012). Midgap states, Raman scattering, glass homogeneity, percolative rigidity and stress transitions in chalcogenides. Phys. Stat. Sol. B https://doi.org/10.1002/pssb.201200368.

23 23 Vailles, Y., Qu, T., Micoulaut, M., and Boolchand, P. (2005). Direct evidence of rigidity loss and self‐organization in silicate glasses. J. Phys. Condens. Matter 17: 4889–4896.

24 24 Wang, T., Gulbiten, O., Wang, R. et al. (2014). Relative contribution of stoichiometry and mean coordination to the fragility of Ge‐As – Se glass forming liquids. J. Phys. Chem. B 118: 1436–1442.

25 25 Shatnawi, M., Farrow, C.L., Chen, P. et al. (2008). Search for a structural response to the intermediate phase in GexSe(1‐x) glasses. Phys. Rev. B 77: 094134–094111.

26 26 Boolchand, P. and Thorpe, M.F. (1994). Glass‐forming tendency, percolation of rigidity, and one‐fold coordinated atoms in covalent networks. Phys. Rev. B 50: 10366–10368.

27 27 Wang, Y., Wells, J., Georgiev, D.G. et al. (2001). Sharp rigid to floppy phase transition induced by dangling ends in a network glass. Phys. Rev. Lett. 87: 185503–185504.

28 28 Tichy, L. and Ticha, H. (2000). Remark on the glass forming ability in GexSe(1‐x) and AsxSe(1‐x) systems. J. Non Cryst. Solids 261: 277–281.

29 29 Gjersing, E.L., Sen, S., and Youngman, R.E. (2010). Mechanistic understanding of the effect of rigidity percolation on structural relaxation in supercooled germanium selenide liquids. Phys. Rev. B 82: 014203–014205.

30 30 Tatsumisago, M., Halfpap, B.L., Green, J.L. et al. (1990). Fragility of Ge‐As – Se glass‐forming liquids in relation to rigidity percolation, and the Kauzmann paradox. Phys. Rev. Lett. 64: 1549–1552.

31 31 Senapati, U. and Varshneya, A.K. (1996). Viscosity of chalcogenide glass forming liquids: an anomaly in the strong and fragile classification. J. Non Cryst. Solids 197: 210–218.

32 32 Naumis, G.G. (2006). Glass transition phenomenology and flexibility: an approach using the energy landscape formalism. J. Non Cryst. Solids 352: 4865–4870.

33 33 Mauro, J.C., Yue, Y., Ellison, A.J. et al. (2009). Viscosity of glass‐forming liquids. Proc. Natl. Acad. Sci. U. S. A. 106: 19780–19784.

34 34 Smedskjaer, M.M., Mauro, J.C., Sen, S., and Yue, Y. (2012). Quantitative design of glassy materials using the temperature dependent constraint theory. Chem. Mater. 22: 5358–5365.

35 35 Zhang, C., Hu, L., Yue, Y., and Mauro, J.C. (2010). Fragile to strong transition in metallic glass forming liquids. J. Chem. Phys. 133: 014508/7.

Encyclopedia of Glass Science, Technology, History, and Culture

Подняться наверх