Читать книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов - Страница 38
References
Оглавление1 Bontemps, G. (1868). Guide du verrier. Traité historique et pratique de la fabrication des verres, cristaux, vitraux, 1. Paris: Librairie du dictionnaire des arts et manufactures (trans. Cable, M. (2008). Bontemps on Glass Making. Sheffield: Society of Glass Technology).
2 Figuier, L. (1873). Les Merveilles de l'industrie ou description des principales industries modernes [The Wonders of Industry or Description of the Main Modern Industries], vol. 1, 156–157. Paris: Furne, Jouvet et Cie.
3 Richet, P. (2000). L'Âge du verre [The Glass Age]. Paris: Gallimard.
4 Morse, D.L. and Evenson, J.W. (2016). Welcome to the glass age. Int. J. Appl. Glass Sci. 7: 409–412.
5 Cann, J.R. and Renfrew, C. (1964). The characterization of obsidian and its application to the Mediterranean region. Proc. Prehist. Soc. 30: 111–133.
6 Gasparyan, B. and Arimura, M. (eds.) (2014). Stone Age of Armenia. A Guide‐Book to the Stone Age Archaeology in the Republic of Armenia. Kamazawa: Kamazawa University.
7 Shea, J.J. (2013). Stone Tools in the Paleolithic and Neolithic near East: A Guide. Cambridge: Cambridge University Press.
8 Adler, D.S., Wilkinson, K.N., Bloc, S. et al. (2014). Early Levallois technology and the lower to middle Paleolithic transition in the southern Caucasus. Science 345: 1609–1613.
9 Glauberman, P., Gasparian, B., Wilkinson, K. et al. (2016). Introducing Barozh 12: a middle Palaeolithic open‐air site on the edge of the Ararat depression, Armenia. ARAMAZD, Armenian J. Near‐East. Stud. 9 (2016): 7–20.
10 Petronius Arbiter, 51 (repr. 1987). Satyricon (trans. M. Heseltine). Cambridge: Harvard University Press.
11 Shortland, A., Schachner, L., Freestone, I., and Tite, M. (2006). Natron as a flux in the early vitreous materials industry: sources, beginings and reasons for decline. J. Archaeol. Sci. 33: 521–530.
12 Stern, E.M. (1999). Roman glass blowing in a cultural context. Am. J. Archaeol. 103: 441–484.
13 Lomonosov, M.V. (1967). Pis'mo o pol'ze stekla (trans. H.B. Segel, Letter on the Use of Glass, 209–220 in The Literature of Eighteenth‐Century Russia). New York: E.P. Dutton & Co.
14 Figuier, L. (1868). Les Merveilles de la science ou Description populaire des inventions modernes [The Wonders of Science or Popular Description of Modern Inventions], vol. I, 463. Paris: Furne, Jouvet et Cie.
15 Franklin, B. (1769). Letter to Giambatista Beccaria. In: Experiments and Observations on Electricity, Made at Philadelphia in America, to Which Are Added Letters and Papers on Philosophical Subjects, 4e, 427–433. London: D. Henry.
16 Mozart, W.A. Adagio in C for armonica (K. 356); Adagio and Rondo in C minor for armonica, flute, oboe, viola and cello (K. 617).
17 Cohen, A. (1981). Music in the French Royal Academy of Sciences: A Study in the Evolution of Musical Thought. Princeton University Press: Princeton.
18 Powell, A. (2002). The Flute. Yale: Yale University Press.
19 Knauth, P. (1979). A model for the origin of chert in limestone. Geology 7: 274–277.
20 Hesse, R. (1989). Silica diagenesis: origin of inorganic and replacement cherts. Earth Sci. Rev. 26: 253–284.
21 Bots, P., Benning, L.G., Rodriguez‐Blanco, J.‐D. et al. (2012). Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Design 12: 3806–3814.
22 Marron, A.O., Ratcliffe, S., Wheeler, G.L. et al. (2016). The evolution of silicon transport in eukaryotes. Mol. Biol. Evol. 33: 3226–3248.
23 Gibbs, G.V., Meagher, E.P., Newton, M.D., and Swanson, D.K. (1981). A comparison of experimental and theoretical bond length and angle variations for minerals and inorganic solids, and molecules. In: Structure and Bonding in Crystals (eds. M. O'Keefe and A. Navrotsky), 195–225. New York: Academic Press.
24 Richet, P. and Ottonello, G. (2014). The earth as a multiscale quantum‐mechanical system. C. R. Geosci. 346: 317–325.
25 Zanotto, E.D. and Cassar, D.R. (2017). The microscopic origin of the extreme glass‐forming ability of albite and B2O3. Sci. Rep. 7: 43022. https://doi.org/10.1038/srep43022.
26 Sipp, A., Neuville, D.R., and Richet, P. (1997). Viscosity, configurational entropy and relaxation kinetics of borosilicate melts. J. Non Cryst. Solids 211: 281–293.
27 Mazurin, O.V., Startsev, Y.K., and Potselueva, L.N. (1979). Temperature dependences of the viscosity of some glasses at a constant structural temperature. Sov. J. Glass Phys. Chem. 5: 68–79.
28 Sipp, A. and Richet, P. (2002). Equivalence of the kinetics of volume, enthalpy and viscosity relaxation in glass‐forming silicate liquids. J. Non Cryst. Solids 298: 202–212.
29 Nikonov, A.M., Bogdanov, V.N., Nemilov, S.V. et al. (1982). Structural relaxation in binary alkalisilicate melts. Fyz. Khim. Stekla 8: 694–703.
30 Vo‐Thanh, D., Bottinga, Y., Polian, A., and Richet, P. (2005). Sound velocity in alumino‐silicate liquids determined up to 2550 K from Brillouin spectroscopy: glass transitions and crossover temperatures. J. Non Cryst. Solids 351: 61–68.
31 Webb, S. and Courtial, P. (1996). Compressibility of melts in the system CaO‐Al2O3‐SiO2. Geochim. Cosmochim. Acta 60: 75–86.
32 Askarpour, V., Manghnani, M.H., and Richet, P. (1993). Elastic properties of diopside, anorthite and grossular glasses and liquids: a Brillouin scattering study up to 1400 K. J. Geophys. Res. B98: 17683–17689.
33 Stevens, J.R., Coakley, R.W., Chau, K.W., and Hunt, J.L. (1986). The pressure variation of the glass transition temperature in atactic polystyrene. J. Chem. Phys. 84: 1006–1014.
34 Thomas, S.B. and Parks, G.S. (1931). Studies on glass. VI. Some specific heat data on boron trioxide. J. Phys. Chem. 35: 2091–2102.
35 Hutchinson, J.M. (2009). Determination of the glass transition temperature. Methods correlation and structural heterogeneity. J. Therm. Anal. Calorim. 98: 578–589.
36 Adachi, K., Suga, H., and Seki, S. (1968). Phase changes in crystalline and glassy‐crystalline cyclohexanol. Bull. Chem. Soc. Jpn. 41: 1073–1087.
37 Maxwell, J.C. (1868). On the dynamical theory of gases. Philos. Mag. 35: 129–145. and 185–217.
38 Dingwell, D.B. and Webb, S.L. (1989). Structural relaxation in silicate melts and non‐Newtonian melt rheology in geologic processes. Phys. Chem. Minerals 16: 508–516.
39 Mysen, B. and Richet, P. (2005). Silicate Glasses and Melts. Properties and Structure. Amsterdam: Elsevier.
40 Toplis, M.J. and Richet, P. (2000). Equilibrium expansivity of silicate liquids in the glass transition range. Contrib. Mineral. Petrol. 139: 672–683.
41 Richet, P., Robie, R.A., and Hemingway, B.S. (1986). Low‐temperature heat capacity of diopside glass (CaMgSi2O6): a calorimetric test of the configurational‐entropy theory applied to the viscosity of liquid silicates. Geochim. Cosmochim. Acta 50: 1521–1533.
42 Angell, C.A. (1985). Strong and fragile liquids. In: Relaxation in Complex Systems (eds. K.L. Ngai and G.B. Wright), 3–11. Arlington, VA: Office Naval Research.
43 Goldstein, M. (1969). Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51: 3728–3739.
44 McKinney, J.E. and Goldstein, M. (1974). PVT relationships for liquid and glassy poly(vinyl acetate). J. Res. N.B.S. 78A: 331–353.
45 Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperature. Chem. Rev. 43: 219–256.
46 Chang, S.S. and Bestul, A.B. (1972). Heat capacity and thermodynamic properties of o‐terphenyl crystal, glass, and liquid. J. Chem. Phys. 56: 503–516.
47 Chang, S.S. and Bestul, A.B. (1974). Heat capacities of selenium crystal (trigonal), glass, and liquid from 5 to 360 K. J. Chem. Therm. 6: 325–344.
48 Gibbs, J.H. and Di Marzio, E. (1958). Nature of the glass transition and the glassy state. J. Chem. Phys. 28: 373–383.
49 Adam, G. and Gibbs, J.H. (1965). On the temperature dependence of cooperative relaxation properties in glass‐forming liquids. J. Chem. Phys. 43: 139–146.
50 Angell, C.A. (1997). Entropy and fragility in supercooling liquids. J. Res. NIST 102: 171–185.
51 Laughlin, W.T. and Uhlmann, D.R. (1972). Viscous flow in simple organic liquids. J. Phys. Chem. 76: 2317–2325.
52 Angell, C.A. and Sichina, W. (1976). Thermodynamics of the glass transition: empirical aspects. Ann. N. Y. Acad. Sci. 279: 53–67.