Читать книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов - Страница 59

2.2 Grain Size

Оглавление

The particle (or grain) size distribution (PSD) is a crucial parameter of individual raw materials. The required PSD may be costly to achieve. It primarily depends on the hardness of the bulk material, which in turn roughly correlates with its melting temperature [5]. As examples, K‐feldspar has a hardness of 6 (out of a maximum of 10) on the Mohs scale and melts at about 1200 °C, quartz has a hardness of 7 and melts above 1700 °C (in the form of cristobalite), whereas corundum (α‐Al2O3) has a hardness of 9 and melts above 2000 °C. Hence, the glassmaker determines the final PSD of the raw material as a compromise between meltability, furnace technology, and price (cost) while also limiting the unnecessary fines that generate dust and furnace carryovers. For specific applications, the glassmaker may in addition request the supplier of raw material to cut the lower end of the PSD to get totally rid of dust from fines.

The sieve PSD curves of a variety of important raw materials are compared in Figure 2 to illustrate their variations with composition and overall batch meltability. The median diameter representing 50% of a sieved raw material is termed D50. For quartz, it ranges from 200 to 300 μm when sand is used for standard window or bottle glass but is much lower at 50–100 μm for the flour, for instance, used as SiO2‐carrier for E‐glass fiber, a peraluminous, boron‐bearing, alkaline earth silicate (Chapter 1.5). At the other end, the D50 of limestone and dolomite may exceed 1 mm and that of basalt for insulating glass applications may even be 10 times larger because chemical heterogeneities are in this case much smaller than within a mixture of raw materials.

Table 1 Natural and synthetic raw materials compositions and prices.

Oxide Raw material Bulk chemistry Overall mineralogy Sp – Fr – It – De Price €/T*
SiO2 Quartz‐sand >95 % SiO2; H2O, Al2O3, RO, R2O, Fe2O3 Quartz, free‐water, mica, feldspars Arena – Sable – Sabbia – Sand 20–200€/T
Sandstone >95 % SiO2; H2O, Al2O3, RO, R2O, Fe2O3 Quartz, mica, feldspars, FeTi‐oxides, free‐water Arenisca – Grès – Arenaria – Sandstein
Quartzite >95 % SiO2; H2O, Al2O3, RO, R2O, Fe2O3 Quartz, mica, feldspars, FeTi‐oxides Cuarcita – Quartzite – Quarzite – Quarzit
Al2O3, R2O Feldspar (concentrates from greywacke, arkose, pegmatite, granite, etc.) 17–20 % Al2O3; 11–15 % R2O; <65 % SiO2; H2O; Fe2O3, TiO2, CaO Alkali‐feldspars [(K,Na)AlSi3O8: orthoclase, microcline, sanidine, albite, and their solid solutions], quartz (15–20%), micas. Li‐rich (up to 1.5 wt %) contain spodumene, petalite, or lepidolite (Li‐mica), mainly. Feldespato – Feldspath – Feldspato – Feldspat 80–150€/T
Nepheline(−syenite) 20–26 % Al2O3; 15–18 % R2O; <56 % SiO2; H2O; Fe2O3, TiO2, CaO Alkali‐feldspars [(K,Na)AlSi3O8: microcline, sanidine, albite, and their solid solutions], alkali‐feldspatoids [(K,Na)AlSiO4: nepheline, kalsilite, and their solid solutions], micas, titanite, perovskite, garnet, zircon, apatite, REE‐silicates. Silica undersaturated = no quartz Nefelina – Néphéline – Nefelina – Nephelin 100–130€/T
Phonolite 20–26 % Al2O3; 15–18 % R2O; <56 % SiO2; H2O; Fe2O3, TiO2, CaO Alkali‐feldspars [(K,Na)AlSi3O8: sanidine, albite, and their solid,solutions], alkali‐feldspatoids [(K,Na)AlSiO4: nepheline, kalsilite, and their solid,solutions], leucite KAlSi2O6, sodalite, haüyne, carnegeite, micas, amphibole, pyroxene, titanite, ilmenite, perovskite. Silica undersaturated = no quartz Fonolita – Phonolite – Fonolite – Phonolith 60–70€/T
Anorthosite <30 % Al2O3, <15 % CaO, <45 % SiO2, Fe2O3, R2O, MgO Anorthite CaAl2Si2O8, pyroxene, amphibole
Al2O3 Bauxite (raw or calcined) 40 % < Al2O3 < 80 %; 10–15 % Fe2O3; H2O; SiO2 Gibbsite Al(OH)3, diaspore α‐AlO(OH), boehmite y‐AlO(OH), bayerite, corundum, goethite, hematite, kaolin, anatase Bauxita – Bauxite – Bauxite – Bauxit 250–400€/T
Hydrated alumina >60 % Al2 O3 , H2 O, Fe2 O3 , SiO2 Al(OH)3 polymorphs 250–300€/T
Calcined alumina 99 % Al2 O3 , Fe2 O3 , SiO2 Corundum 500–600€/T
Kaoline >45 % SiO2, >35 % Al2O3, 13–14 % H2O, Fe2O3 Kaolinite Al2Si2O5(OH)4, quartz Caolín – Kaolin – Caolino – Kaolin 100–300 €/T
Pyrophyllite >65 % SiO2, >25 % Al2O3, H2O Pyrophyllite Al2Si4O10(OH)2, quartz
Na2O Na‐carbonate (soda ash) 58 % Na2 O, 42 % CO2 Natrite Na2 CO3 , natron Na2 (CO3 ) · 10 H2 O, trona Na2 CO3 · NaHCO3 · 2 H2 O Soda – Na‐carbonate (Soude) – Soda – Soda 150–300 €/T
Albite 67 % SiO2, 20 % Al2O3, 11 % Na2O, K2O Albite NaAlSi3O8
K2O K‐carbonate 58 % K2 O, 42 % CO2 K2 CO3 Potasa – Potasse – Potassio – Pottasche 500–1500 €/T
CaO Limestone 56 % CaO, 44 % CO2, MgO, SiO2 Calcite CaCO3, dolomite, quartz Caliza – Calcaire – Calcare – Kalkstein 20–40 €/T
Burnt lime >98 % CaO, H2 O CaO, Ca(OH) 2 Cal – Chaux – Calce – gebranntes Kalk
Marble 56 % CaO, 44 % CO2, MgO, SiO2 Calcite CaCO3, dolomite, quartz Marmol – Marbre – Marmo – Marmor
Wollastonite 48 % CaO, 52 % SiO2 Wollastonite CaSiO3 80–450 €/T
MgO Dolomite 30 % CaO, 22 % MgO, 47 % CO2, SiO2 Dolomite CaMg(CO3)2 Dolomie – Dolomie – Dolomia – Dolomit 20–40 €/T
Magnesite 48 % MgO, 52 % CO2, CaO Magnesite MgCO3 250–400 €/T
Talc 32 % MgO, 63 % SiO2, <5 % H2O Talc Mg3Si4O10(OH)2 Talco – Talc – Talco – Talk 100–300 €/T
Basalt <10 % MgO, <15 % Al2O3, <12 % Fe2O3, <12 % CaO, <44 % SiO2, TiO2, R2O Olivine, pyroxene, plagioclase, amphibole Basalto – Basalte – Basalto – Basalt 10–20 €/T
Li2O Li‐carbonate 40 % Li2 O, 60 % CO2 Zabuyelite Li2 CO3 , Li(OH)2 5000–5020 k €/T
Spodumene (concentrate from pegmatite) 7 % Li2O, 27 % Al2O3, 65 % SiO2 Spodumene LiAlSi2O6, quartz 900–1000 €/T
Petalite (concentrate from pegmatite) 4 % Li2O, 16 % Al2O3, 78 % SiO2 Petalite LiAlSi4O10 800–900 €/T
B2O3 Colemanite 50 % B2O3, 27 % CaO, 20 % H2O, SiO2 Ca2B6O11·5 H2O, Ca2B6O8(OH)6·2 H2O 400–600 €/T
Ulexite 42 % B2O3, 13 % CaO, 35 % H2O, 7 % Na2O NaCaB5O6(OH)6·5 H2O 350–450 €/T
Borax 35 % B2O3, 45 % H2O, 15 % Na2O Na2 B4 O7 ·10 H2 O, Na2 B4 O5 (OH)4 ·8 H2 O Borax – Borax – Borace – Borax 350–500 €/T
Boric acid 56 % B2 O3 , 44 % H2 O Sassolite H3 BO3 Acido borico – Acide borique – Acido borico – Borsäure 650–1000 €/T
BaO Ba‐nitrate 58 % BaO, 42 % NOx BaNO 3 1200–1300 €/T
Ba‐carbonate 78 % BaO, 22 % CO 2 Witherite BaCO 3 350–800 €/T
F Fluorspar 49 % F, 72 % CaO equivalent Fluorite CaF2 Fluorita – Spath Fluor – Fluorite – Flußspath 300 €/T
SO3 Na sulphate 56 % SO3 , 44 % Na2 O Thenardite Na2 SO4 Sulfato – Solphate – Solfato – Sulfat 100 €/T
Gypsum 46 % SO3, 32 % CaO, 21 % H2O Gypsum CaSO4·2H2O Yeso – Gypse – Gesso – Gips 10 €/T
Anhydrite 59 % SO3 , 41 % CaO Anhydrite CaSO 4 Anhidrita – Anhydrite – Anidrite – Anhydrit 30 €/T
Fe2O3 Iron‐oxide >98 % Fe2O3, FeO Hematite Fe2O3, magnetite Hierro – Fér – Ferro – Eisen 100–2000 €/T
Cr2O3 Chromite 68 % Cr2O3, 32 % FeO Chromite FeCr2O4, (Fe,Mg)(Cr,Al,Fe)2O4 magnesio‐chromite – spinel solid solution Cromita – Chromite – Cromite – Chromit 300–500 €/T
TiO2 Rutile >98 % TiO2, Fe2O3 Rutile TiO2, anatase, ilmenite, titanite Rutilo – Rutile – Rutilo – Rutil 1400–1500 €/T
Ilmenite 52 % TiO2, 48 % FeO, SiO2 Ilmenite FeTiO3 150–200 €/T
ZrO2 Zircon 70 % ZrO2, 30 % SiO2, HfO2, REE, Fe2O3, TiO2 Zircon ZrSiO4 Circón – Zircon – Zircone – Zirkon 1100–1200 €/T
P2O5 Ca‐phosphate 35 % < P2O5 < 45 %, 35 % < CaO < 45 %, R2O, H2O, F Apatite Ca5(PO4)3(OH, F, Cl) Fosfato – Phosphate – Fosfato – Phosphat 500–1000 €/T
V2 O5 Vanadium‐oxide >98 % V2 O5 15,500 €/T
C Coke >90 % fixed‐C Coke 100–200 €/T
Reducers Slag 30–40 % CaO, 30–40 % SiO2 , 10–15 % Al2 O3 Glass 50–200 €/T
O2 Cassiterite >98 % SnO2 Cassiterite SnO2 16,000 €/T
As‐oxide, As acid >98 % As2 O5 >2500 €/T
Sb‐oxide >98 % Sb2 O5
Colorants Se, Co, Cu, Cd, Mn

Prices only indicative as actual quotations strongly depend on quality (grain size distribution, iron content, and overall impurities), volumes, transportation costs (quarry‐to‐plant distance and transportation mode) and, of course, market‐price fluctuations. RO = CaO and MgO; R2O = Na2O + K2O.


Figure 1 Comparison between the compositions of the main raw materials used in glassmaking and those of some important glass products as projected in the pseudo‐ternary Al2O3–R2O + CaO–SiO2 diagram.


Figure 2 Sieve particle size distribution (PSD) curves of the main raw materials used in glassmaking (<40 μm laser PSD domain). The D50 is the median diameter representing 50% of a sieved raw material. The steeper the curve, the more homogeneous is the PSD.

Encyclopedia of Glass Science, Technology, History, and Culture

Подняться наверх