Читать книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов - Страница 59
2.2 Grain Size
ОглавлениеThe particle (or grain) size distribution (PSD) is a crucial parameter of individual raw materials. The required PSD may be costly to achieve. It primarily depends on the hardness of the bulk material, which in turn roughly correlates with its melting temperature [5]. As examples, K‐feldspar has a hardness of 6 (out of a maximum of 10) on the Mohs scale and melts at about 1200 °C, quartz has a hardness of 7 and melts above 1700 °C (in the form of cristobalite), whereas corundum (α‐Al2O3) has a hardness of 9 and melts above 2000 °C. Hence, the glassmaker determines the final PSD of the raw material as a compromise between meltability, furnace technology, and price (cost) while also limiting the unnecessary fines that generate dust and furnace carryovers. For specific applications, the glassmaker may in addition request the supplier of raw material to cut the lower end of the PSD to get totally rid of dust from fines.
The sieve PSD curves of a variety of important raw materials are compared in Figure 2 to illustrate their variations with composition and overall batch meltability. The median diameter representing 50% of a sieved raw material is termed D50. For quartz, it ranges from 200 to 300 μm when sand is used for standard window or bottle glass but is much lower at 50–100 μm for the flour, for instance, used as SiO2‐carrier for E‐glass fiber, a peraluminous, boron‐bearing, alkaline earth silicate (Chapter 1.5). At the other end, the D50 of limestone and dolomite may exceed 1 mm and that of basalt for insulating glass applications may even be 10 times larger because chemical heterogeneities are in this case much smaller than within a mixture of raw materials.
Table 1 Natural and synthetic raw materials compositions and prices.
Oxide | Raw material | Bulk chemistry | Overall mineralogy | Sp – Fr – It – De | Price €/T* |
---|---|---|---|---|---|
SiO2 | Quartz‐sand | >95 % SiO2; H2O, Al2O3, RO, R2O, Fe2O3 | Quartz, free‐water, mica, feldspars | Arena – Sable – Sabbia – Sand | 20–200€/T |
Sandstone | >95 % SiO2; H2O, Al2O3, RO, R2O, Fe2O3 | Quartz, mica, feldspars, FeTi‐oxides, free‐water | Arenisca – Grès – Arenaria – Sandstein | ||
Quartzite | >95 % SiO2; H2O, Al2O3, RO, R2O, Fe2O3 | Quartz, mica, feldspars, FeTi‐oxides | Cuarcita – Quartzite – Quarzite – Quarzit | ||
Al2O3, R2O | Feldspar (concentrates from greywacke, arkose, pegmatite, granite, etc.) | 17–20 % Al2O3; 11–15 % R2O; <65 % SiO2; H2O; Fe2O3, TiO2, CaO | Alkali‐feldspars [(K,Na)AlSi3O8: orthoclase, microcline, sanidine, albite, and their solid solutions], quartz (15–20%), micas. Li‐rich (up to 1.5 wt %) contain spodumene, petalite, or lepidolite (Li‐mica), mainly. | Feldespato – Feldspath – Feldspato – Feldspat | 80–150€/T |
Nepheline(−syenite) | 20–26 % Al2O3; 15–18 % R2O; <56 % SiO2; H2O; Fe2O3, TiO2, CaO | Alkali‐feldspars [(K,Na)AlSi3O8: microcline, sanidine, albite, and their solid solutions], alkali‐feldspatoids [(K,Na)AlSiO4: nepheline, kalsilite, and their solid solutions], micas, titanite, perovskite, garnet, zircon, apatite, REE‐silicates. Silica undersaturated = no quartz | Nefelina – Néphéline – Nefelina – Nephelin | 100–130€/T | |
Phonolite | 20–26 % Al2O3; 15–18 % R2O; <56 % SiO2; H2O; Fe2O3, TiO2, CaO | Alkali‐feldspars [(K,Na)AlSi3O8: sanidine, albite, and their solid,solutions], alkali‐feldspatoids [(K,Na)AlSiO4: nepheline, kalsilite, and their solid,solutions], leucite KAlSi2O6, sodalite, haüyne, carnegeite, micas, amphibole, pyroxene, titanite, ilmenite, perovskite. Silica undersaturated = no quartz | Fonolita – Phonolite – Fonolite – Phonolith | 60–70€/T | |
Anorthosite | <30 % Al2O3, <15 % CaO, <45 % SiO2, Fe2O3, R2O, MgO | Anorthite CaAl2Si2O8, pyroxene, amphibole | |||
Al2O3 | Bauxite (raw or calcined) | 40 % < Al2O3 < 80 %; 10–15 % Fe2O3; H2O; SiO2 | Gibbsite Al(OH)3, diaspore α‐AlO(OH), boehmite y‐AlO(OH), bayerite, corundum, goethite, hematite, kaolin, anatase | Bauxita – Bauxite – Bauxite – Bauxit | 250–400€/T |
Hydrated alumina | >60 % Al2 O3 , H2 O, Fe2 O3 , SiO2 | Al(OH)3 polymorphs | 250–300€/T | ||
Calcined alumina | 99 % Al2 O3 , Fe2 O3 , SiO2 | Corundum | 500–600€/T | ||
Kaoline | >45 % SiO2, >35 % Al2O3, 13–14 % H2O, Fe2O3 | Kaolinite Al2Si2O5(OH)4, quartz | Caolín – Kaolin – Caolino – Kaolin | 100–300 €/T | |
Pyrophyllite | >65 % SiO2, >25 % Al2O3, H2O | Pyrophyllite Al2Si4O10(OH)2, quartz | |||
Na2O | Na‐carbonate (soda ash) | 58 % Na2 O, 42 % CO2 | Natrite Na2 CO3 , natron Na2 (CO3 ) · 10 H2 O, trona Na2 CO3 · NaHCO3 · 2 H2 O | Soda – Na‐carbonate (Soude) – Soda – Soda | 150–300 €/T |
Albite | 67 % SiO2, 20 % Al2O3, 11 % Na2O, K2O | Albite NaAlSi3O8 | |||
K2O | K‐carbonate | 58 % K2 O, 42 % CO2 | K2 CO3 | Potasa – Potasse – Potassio – Pottasche | 500–1500 €/T |
CaO | Limestone | 56 % CaO, 44 % CO2, MgO, SiO2 | Calcite CaCO3, dolomite, quartz | Caliza – Calcaire – Calcare – Kalkstein | 20–40 €/T |
Burnt lime | >98 % CaO, H2 O | CaO, Ca(OH) 2 | Cal – Chaux – Calce – gebranntes Kalk | ||
Marble | 56 % CaO, 44 % CO2, MgO, SiO2 | Calcite CaCO3, dolomite, quartz | Marmol – Marbre – Marmo – Marmor | ||
Wollastonite | 48 % CaO, 52 % SiO2 | Wollastonite CaSiO3 | 80–450 €/T | ||
MgO | Dolomite | 30 % CaO, 22 % MgO, 47 % CO2, SiO2 | Dolomite CaMg(CO3)2 | Dolomie – Dolomie – Dolomia – Dolomit | 20–40 €/T |
Magnesite | 48 % MgO, 52 % CO2, CaO | Magnesite MgCO3 | 250–400 €/T | ||
Talc | 32 % MgO, 63 % SiO2, <5 % H2O | Talc Mg3Si4O10(OH)2 | Talco – Talc – Talco – Talk | 100–300 €/T | |
Basalt | <10 % MgO, <15 % Al2O3, <12 % Fe2O3, <12 % CaO, <44 % SiO2, TiO2, R2O | Olivine, pyroxene, plagioclase, amphibole | Basalto – Basalte – Basalto – Basalt | 10–20 €/T | |
Li2O | Li‐carbonate | 40 % Li2 O, 60 % CO2 | Zabuyelite Li2 CO3 , Li(OH)2 | 5000–5020 k €/T | |
Spodumene (concentrate from pegmatite) | 7 % Li2O, 27 % Al2O3, 65 % SiO2 | Spodumene LiAlSi2O6, quartz | 900–1000 €/T | ||
Petalite (concentrate from pegmatite) | 4 % Li2O, 16 % Al2O3, 78 % SiO2 | Petalite LiAlSi4O10 | 800–900 €/T | ||
B2O3 | Colemanite | 50 % B2O3, 27 % CaO, 20 % H2O, SiO2 | Ca2B6O11·5 H2O, Ca2B6O8(OH)6·2 H2O | 400–600 €/T | |
Ulexite | 42 % B2O3, 13 % CaO, 35 % H2O, 7 % Na2O | NaCaB5O6(OH)6·5 H2O | 350–450 €/T | ||
Borax | 35 % B2O3, 45 % H2O, 15 % Na2O | Na2 B4 O7 ·10 H2 O, Na2 B4 O5 (OH)4 ·8 H2 O | Borax – Borax – Borace – Borax | 350–500 €/T | |
Boric acid | 56 % B2 O3 , 44 % H2 O | Sassolite H3 BO3 | Acido borico – Acide borique – Acido borico – Borsäure | 650–1000 €/T | |
BaO | Ba‐nitrate | 58 % BaO, 42 % NOx | BaNO 3 | 1200–1300 €/T | |
Ba‐carbonate | 78 % BaO, 22 % CO 2 | Witherite BaCO 3 | 350–800 €/T | ||
F | Fluorspar | 49 % F, 72 % CaO equivalent | Fluorite CaF2 | Fluorita – Spath Fluor – Fluorite – Flußspath | 300 €/T |
SO3 | Na sulphate | 56 % SO3 , 44 % Na2 O | Thenardite Na2 SO4 | Sulfato – Solphate – Solfato – Sulfat | 100 €/T |
Gypsum | 46 % SO3, 32 % CaO, 21 % H2O | Gypsum CaSO4·2H2O | Yeso – Gypse – Gesso – Gips | 10 €/T | |
Anhydrite | 59 % SO3 , 41 % CaO | Anhydrite CaSO 4 | Anhidrita – Anhydrite – Anidrite – Anhydrit | 30 €/T | |
Fe2O3 | Iron‐oxide | >98 % Fe2O3, FeO | Hematite Fe2O3, magnetite | Hierro – Fér – Ferro – Eisen | 100–2000 €/T |
Cr2O3 | Chromite | 68 % Cr2O3, 32 % FeO | Chromite FeCr2O4, (Fe,Mg)(Cr,Al,Fe)2O4 magnesio‐chromite – spinel solid solution | Cromita – Chromite – Cromite – Chromit | 300–500 €/T |
TiO2 | Rutile | >98 % TiO2, Fe2O3 | Rutile TiO2, anatase, ilmenite, titanite | Rutilo – Rutile – Rutilo – Rutil | 1400–1500 €/T |
Ilmenite | 52 % TiO2, 48 % FeO, SiO2 | Ilmenite FeTiO3 | 150–200 €/T | ||
ZrO2 | Zircon | 70 % ZrO2, 30 % SiO2, HfO2, REE, Fe2O3, TiO2 | Zircon ZrSiO4 | Circón – Zircon – Zircone – Zirkon | 1100–1200 €/T |
P2O5 | Ca‐phosphate | 35 % < P2O5 < 45 %, 35 % < CaO < 45 %, R2O, H2O, F | Apatite Ca5(PO4)3(OH, F, Cl) | Fosfato – Phosphate – Fosfato – Phosphat | 500–1000 €/T |
V2 O5 | Vanadium‐oxide | >98 % V2 O5 | 15,500 €/T | ||
C | Coke | >90 % fixed‐C | Coke | 100–200 €/T | |
Reducers | Slag | 30–40 % CaO, 30–40 % SiO2 , 10–15 % Al2 O3 | Glass | 50–200 €/T | |
O2 | Cassiterite | >98 % SnO2 | Cassiterite SnO2 | 16,000 €/T | |
As‐oxide, As acid | >98 % As2 O5 | >2500 €/T | |||
Sb‐oxide | >98 % Sb2 O5 | ||||
Colorants | Se, Co, Cu, Cd, Mn |
Prices only indicative as actual quotations strongly depend on quality (grain size distribution, iron content, and overall impurities), volumes, transportation costs (quarry‐to‐plant distance and transportation mode) and, of course, market‐price fluctuations. RO = CaO and MgO; R2O = Na2O + K2O.
Figure 1 Comparison between the compositions of the main raw materials used in glassmaking and those of some important glass products as projected in the pseudo‐ternary Al2O3–R2O + CaO–SiO2 diagram.
Figure 2 Sieve particle size distribution (PSD) curves of the main raw materials used in glassmaking (<40 μm laser PSD domain). The D50 is the median diameter representing 50% of a sieved raw material. The steeper the curve, the more homogeneous is the PSD.