Читать книгу Heterogeneous Catalysts - Группа авторов - Страница 18

References

Оглавление

1 1 Robertson, A.J.B. (1975). The early history of catalysis. Platinum Met. Rev. 19: 64.

2 2 Ross, J.R.H. (2011). Heterogeneous Catalysis: Fundamentals and Applications, 1st Edition. Elsevier B.V.

3 3 Davy, H. (1817). VIII. Some new experiments and observations on the combustion of gaseous mixtures, with an account of a method of preserving a continued light in mixtures of inflammable gases and air without flame. Philos. Trans. R. Soc. London 107: 77.

4 4 Davy, E. (1820). VI. On some combinations of platinum. Philos. Trans. R. Soc. London 110: 108.

5 5 Phillips, P. Jr., (1831). Certain improvements in manufacturing sulphuric acid commonly called oil of vitriol. British Patent 6,096.

6 6 Slama, F. and Wolf, H. (1913). German Patent 291,792.

7 7 Blum, E. (1914), Contact substance to produce sulfuric acid. Swiss Patent CH71,326.

8 8 Louie, D.K. (2005). Handbook of Sulphuric Acid Manufacturing. DKL Engineering.

9 9 Hunt, L.B. (1958). The ammonia oxidation process for nitric acid manufacture. Platinum Met. Rev. 2: 129.

10 10 Connor, H. (1967). The manufacture of nitric acid. Platinum Met. Rev. 11: 2.

11 11 Raney, M. (1925), Method of preparing catalytic material. US Patent 1,563,587.

12 12 Raney, M. (1927). Method of producing finely‐divided nickel. US Patent 1,628,190.

13 13 Raney, M. (1933). Method of preparing catalytic material. US Patent 1,915,473.

14 14 Sheppard, D. (2017). Robert Le Rossignol, 1884–1976: engineer of the ‘Haber’ process. Notes Rec. R. Soc. London 71: 263.

15 15 Carl Bosch – biographical. NobelPrize.org. Nobel Media AB 2019. https://www.nobelprize.org/prizes/chemistry/1931/bosch/biographical/ (accessed 24 October 2019).

16 16 Travis, A.S. (2014). Nitrogen, Novel High‐Pressure Chemistry, and the German War Effort (1900–1918), The Seventh Wheeler Lecture. Royal Society of Chemistry.

17 17 Pattabathula, V. and Richardson, J. (2016). Introduction to ammonia production. CEP Magazine (September).

18 18 Alwin, M. (1950). Early studies of multi component catalysts. In: Advances in Catalysis, vol. 2 (eds. W.G. Frankeburg, V.I. Komarewsky and E.K. Rideal). New York: Academic Press, Inc.

19 19 Mittasch, A. (1951). Geschichte der Ammoniak‐synthese. Verlag Chemie: Weinheim.

20 20 Robertson, A.J.B. (1983). The development of ideas on heterogeneous catalysis. progress from davy to langmuir. Platinum Met. Rev. 27: 31.

21 21 Appl, M. (1982). The Haber–Bosch process and the development of chemical engineering. In: A Century of Chemical Engineering (ed. W.F. Furter). New York: Plenum.

22 22 Patart, G. (1922). Procédé de Production d'Alcools, d'Aldéhydes et d'Acides à Partir de Mélanges Gazeux Maintenus sous Pression et Soumis à l'Action d'Agents Catalytiques ou de l'Électricité. French Patent 540,543.

23 23 Mittasch, A., Pier, M., and Müller, C. (1931). Manufacture of oxygenated organic compounds. IG Farbenindustrie AG. US Patent 1,791,568.

24 24 Sheldon, D. (2017). Methanol production – a technical history. Johnson Matthey Technol. Rev. 61: 172.

25 25 Mittasch, A. and Pier, M. (1926). Synthetic manufacture of methanol. US Patent 1,569,775.

26 26 BASF AG (1925). Improvements in the manufacture of methyl alcohol and other oxygenated organic compounds. British Patent 231,285.

27 27 Błasiak, E. (1947). Sposób Wytwarzania Wysokoaktywnego Katalizatora do Syntezy Metanolu. Polish Patent 34,000.

28 28 Davies, P., Snowdon, F.F., Bridger, G.W. et al. (1965). Water‐gas conversion and catalysts therefor. British Patent 1,010,871.

29 29 Gallagher, J.T. and Kidd, J.M. (1969). Methanol synthesis. British Patent 1,159,035.

30 30 Fischer, F. and Tropsch, H. (1926). The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennstoff‐Chem. 7: 97.

31 31 Fischer, F. and Tropsch, H. (1930). Brennstoff‐Chem. 11: 489.

32 32 Fischer, F. and Meyer, K. (1931). Brennstoff‐Chem. 12: 225.

33 33 Fischer, F. and Koch, H. (1932). Brennstoff‐Chem. 13: 61.

34 34 Schulz, H. (1999). Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal., A 186: 3.

35 35 Khodakov, A.Y., Chu, W., and Fongarland, P. (2007). Advances in the development of novel cobalt Fischer−Tropsch catalysts for synthesis of long‐chain hydrocarbons and clean fuels. Chem. Rev. 107: 1692.

36 36 (1996). Houdry Process for Catalytic Cracking, A National Historic Chemical Landmark. American Chemical Society.

37 37 Kettering, C.F. (1947). Thomas Midgley Jr. 1889–1944, vol. 24, 359. Biographical Memoirs. National Academy of Sciences.

38 38 Shankland, R. (1954). Industrial catalytic cracking. Adv. Catal. 6: 271.

39 39 Milton, R.M. (1959). Molecular sieve adsorbents. US Patent 2,882,243.

40 40 Breck, D.W. (1964). Crystalline zeolite Y. US Patent 3,130,007.

41 41 Argauer, R.J. and Landolt, G.R. (1972). Crystalline zeolite ZSM‐5 and method of preparing the same. US Patent 3,702,886.

42 42 There were preceding synthetic zeolites, e.g., Beta zeolites, that existed but the structures were not properly understood due to the lack of interests until much later.

43 43 IZA Structure Commission. www.iza-structure.org (accessed 29 February 2020).

44 44 Kim, K., Lee, T., Kwon, Y. et al. (2016). Lanthanum‐catalysed synthesis of microporous 3D graphene‐like carbons in a zeolite template. Nature 535: 131.

45 45 Kresge, C.T., Leonowicz, M.E., Roth, W.J. et al. (1992). Ordered mesoporous molecular sieves synthesized by a liquid‐crystal template mechanism. Nature 359: 710.

46 46 Zhao, D., Feng, J., Huo, Q. et al. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279: 548.

47 47 Li, W., Liu, J., and Zhao, D. (2016). Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1: 16023.

48 48 Yaghi, O.M. and Li, H. (1995). Hydrothermal synthesis of a metal–organic framework containing large rectangular channels. J. Am. Chem. Soc. 117: 10401.

49 49 Xuan, W., Zhu, C., Liu, Y., and Cui, Y. (2012). Mesoporous metal–organic framework materials. Chem. Soc. Rev. 41: 1677.

50 50 Côté, A.P., Benin, A.I., Ockwig, N.W. et al. (2005). Porous, crystalline, covalent organic frameworks. Science 310: 1166.

51 51 Teoh, W.Y., Scott, J.A., and Amal, R. (2012). Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3: 629.

52 52 Bin, L., Liu, G., and Wang, L. (2016). Recent advances in 2D materials for photocatalysis. Nanoscale 13: 6904.

53 53 Sietsma, J.R.A., Meeldijk, J.D., den Breejen, J.P. et al. (2007). The preparation of supported NiO and Co3O4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates. Angew. Chem. Int. Ed. 46: 4547.

54 54 Larminie, J. and Dicks, A. Fuel Cell Systems Explained, 2e. Wiley.

55 55 Hutchings, G.J. (1985). Vapor phase hydrodechlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 96: 292.

56 56 Haruta, M., Kobayashi, T., Sano, H., and Yamada, N. (1987). Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16: 405.

57 57 Chen, M.S. and Goodman, D.W. (2004). The structure of catalytically active gold on titania. Science 306: 252.

58 58 Okazaki, K., Ichikawa, S., Maeda, Y. et al. (2005). Electronic structures of Au supported on TiO2. Appl. Catal., A 291: 45.

59 59 Bezemer, G.L., Bitter, J.H., Kuipers, H.P.C.E. et al. (2006). Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128: 3956.

60 60 Li, Y., Boone, E., and El‐Sayed, M.A. (2002). Size effects of PVP−Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18: 4921.

61 61 Zhu, J., Yang, M.‐L., Yu, Y. et al. (2015). Size‐dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. ACS Catal. 5: 6310.

62 62 Murray, R.W. (2008). Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108: 2688.

63 63 Xu, F., Chen, J., Kalytchuk, S. et al. (2017). Supported gold clusters as effective and reusable photocatalysts for the abatement of endocrine‐disrupting chemicals under visible light. J. Catal. 354: 1.

64 64 Weng, B., Lu, K.‐Q., Tang, Z. et al. (2018). Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 9: 1543.

65 65 Maschmeyer, T., Rey, F., Sankar, G., and Thomas, J.M. (1995). Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378: 159.

66 66 Samantaray, M.K., D'Elia, V., Pump, E. et al. (2019). The comparison between single atom catalysis and surface organometallic catalysis. Chem. Rev. https://doi.org/10.1021/acs.chemrev.9b00238.

67 67 Yang, X.‐F., Wang, A., Qiao, B. et al. (2013). Single‐atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46: 1740.

68 68 Liu, L. and Corma, A. (2018). Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118: 4981–5079.

69 69 Kim, W., Edri, E., and Frei, H. (2016). Hierarchical inorganic assemblies for artificial photosynthesis. Acc. Chem. Res. 49: 1634.

Heterogeneous Catalysts

Подняться наверх