Читать книгу Heterogeneous Catalysts - Группа авторов - Страница 71

References

Оглавление

1 1 Ertl, G., Knözinger, H., Schüth, F., and Weitkamp, J. (2008). Preface. In: Handbook of Heterogeneous Catalysis, vol. 1 (eds. G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp). Wiley‐VCH.

2 2 Valden, M., Lai, X., and Goodman, D.W. (1998). Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281 (5383): 1647–1650.

3 3 Higaki, T., Zhou, M., Lambright, K.J. et al. (2018). Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface plasmon resonance. J. Am. Chem. Soc. 140 (17): 5691–5695.

4 4 Vajda, S. and White, M.G. (2015). Catalysis applications of size‐selected cluster deposition. ACS Catal. 5 (12): 7152–7176.

5 5 Wegner, K., Piseri, P., Tafreshi, H.V., and Milani, P. (2006). Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D: Appl. Phys. 39 (22): R439.

6 6 Gruene, P., Rayner, D.M., Redlich, B. et al. (2008). Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science 321 (5889): 674–676.

7 7 Smolanoff, J., L/apicki, A., and Anderson, S.L. (1995). Use of a quadrupole mass filter for high energy resolution ion beam production. Rev. Sci. Instrum. 66 (6): 3706–3708.

8 8 Sanchez, A., Abbet, S., Heiz, U. et al. (1999). When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103 (48): 9573–9578.

9 9 Halder, A., Curtiss, L.A., Fortunelli, A., and Vajda, S. (2018). Perspective: size selected clusters for catalysis and electrochemistry. J. Chem. Phys. 148 (11): 110901‐1–110901‐15.

10 10 Tyo, E.C. and Vajda, S. (2015). Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10 (7): 577–588.

11 11 Heiz, U., Sanchez, A., Abbet, S., and Schneider, W.D. (1999). Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121 (13): 3214–3217.

12 12 Yoon, B., Häkkinen, H., Landman, U. et al. (2005). Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307 (5708): 403–407.

13 13 Landman, U., Yoon, B., Zhang, C. et al. (2007). Factors in gold nanocatalysis: oxidation of CO in the non‐scalable size regime. Top. Catal. 44 (1–2): 145–158.

14 14 Thostrup, P., Vestergaard, E.K., An, T. et al. (2003). CO‐induced restructuring of Pt(110)‐(1×2): bridging the pressure gap with high‐pressure scanning tunneling microscopy. J. Chem. Phys. 118 (8): 3724–3730.

15 15 Baxter, E.T., Ha, M.‐A., Cass, A.C. et al. (2017). Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: strong cluster size dependence linked to preferred catalyst morphologies. ACS Catal. 7 (5): 3322–3335.

16 16 Schweinberger, F.F., Berr, M.J., Döblinger, M. et al. (2013). Cluster size effects in the photocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 135 (36): 13262–13265.

17 17 Nesselberger, M., Roefzaad, M., Fayçal Hamou, R. et al. (2013). The effect of particle proximity on the oxygen reduction rate of size‐selected platinum clusters. Nat. Mater. 12 (10): 919–924.

18 18 Kwon, G., Ferguson, G.A., Heard, C.J. et al. (2013). Size‐dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7 (7): 5808–5817.

19 19 Liu, C., Yang, B., Tyo, E. et al. (2015). Carbon dioxide conversion to methanol over size‐selected Cu4 clusters at low pressures. J. Am. Chem. Soc. 137 (27): 8676–8679.

20 20 Negreiros, F.R., Halder, A., Yin, C. et al. (2018). Bimetallic Ag–Pt sub‐nanometer supported clusters as highly efficient and robust oxidation catalysts. Angew. Chem. Int. Ed. 57 (5): 1209–1213.

21 21 Cotton, F.A. (1966). Transition‐metal compounds containing clusters of metal atoms. Q. Rev. Chem. Soc. 20 (3): 389–401.

22 22 Cotton, F.A. (1964). Metal atom clusters in oxide systems. Inorg. Chem. 3 (9): 1217–1220.

23 23 Cotton, F.A. (1981). Metal–metal multiple bonds and metal clusters. In: Reactivity of Metal–Metal Bonds, vol. 155 (ed. M.H. Chisholm), 1–16. American Chemical Society.

24 24 Dyson, P. and McIndoe, S. (2000). Transition Metal Carbonyl Cluster Chemistry, vol. 2. CRC Press.

25 25 Dyson, P.J. (2004). Catalysis by low oxidation state transition metal (carbonyl) clusters. Coord. Chem. Rev. 248 (21): 2443–2458.

26 26 Ciabatti, I., Femoni, C., Iapalucci, M.C. et al. (2014). Platinum carbonyl clusters chemistry: four decades of challenging nanoscience. J. Cluster Sci. 25 (1): 115–146.

27 27 McKenzie, L.C., Zaikova, T.O., and Hutchison, J.E. (2014). Structurally similar triphenylphosphine‐stabilized undecagolds, Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl, exhibit distinct ligand exchange pathways with glutathione. J. Am. Chem. Soc. 136 (38): 13426–13435.

28 28 Sharma, S., Chakrahari, K.K., Saillard, J.‐Y., and Liu, C.W. (2018). Structurally precise dichalcogenolate‐protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 51 (10): 2475–2483.

29 29 Yao, Q., Chen, T., Yuan, X., and Xie, J. (2018). Toward total synthesis of thiolate‐protected metal nanoclusters. Acc. Chem. Res. 51 (6): 1338–1348.

30 30 Lei, Z., Wan, X.‐K., Yuan, S.‐F. et al. (2018). Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 51 (10): 2465–2474.

31 31 Weßing, J., Ganesamoorthy, C., Kahlal, S. et al. (2018). The Mackay‐type cluster [Cu43Al12](Cp*)12: open‐shell 67‐electron superatom with emerging metal‐like electronic structure. Angew. Chem. Int. Ed. 57 (44): 14630–14634.

32 32 Braga, D., Dyson, P.J., Grepioni, F., and Johnson, B.F.G. (1994). Arene clusters. Chem. Rev. 94 (6): 1585–1620.

33 33 Huttner, G. and Knoll, K. (1987). RP‐bridged metal carbonyl clusters: synthesis, properties, and reactions. Angew. Chem. Int. Ed. Engl. 26 (8): 743–760.

34 34 Weinert, B., Mitzinger, S., and Dehnen, S. (2018). (Multi‐)metallic cluster growth. Chem. Eur. J. 24 (34): 8470–8490.

35 35 Edelmann, F.T. (2016). Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2015. Coord. Chem. Rev. 318: 29–130.

36 36 Hungria, A.B., Raja, R., Adams, R.D. et al. (2006). Single‐step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew. Chem. Int. Ed. 45 (29): 4782–4785.

37 37 Wu, Z., Lanni, E., Chen, W. et al. (2009). High yield, large scale synthesis of thiolate‐protected Ag7 clusters. J. Am. Chem. Soc. 131 (46): 16672–16674.

38 38 Yang, H., Wang, Y., Huang, H. et al. (2013). All‐thiol‐stabilized Ag44 and Au12Ag32 nanoparticles with single‐crystal structures. Nat. Commun. 4: 2422.

39 39 Anderson, D.P., Alvino, J.F., Gentleman, A. et al. (2013). Chemically‐synthesised, atomically‐precise gold clusters deposited and activated on titania. Phys. Chem. Chem. Phys. 15 (11): 3917–3929.

40 40 Niihori, Y., Shima, D., Yoshida, K. et al. (2018). High‐performance liquid chromatography mass spectrometry of gold and alloy clusters protected by hydrophilic thiolates. Nanoscale 10 (4): 1641–1649.

41 41 Lewis, L.N. (1993). Chemical catalysis by colloids and clusters. Chem. Rev. 93 (8): 2693–2730.

42 42 Jadzinsky, P.D., Calero, G., Ackerson, C.J. et al. (2007). Structure of a thiol monolayer‐protected gold nanoparticle at 1.1 Å resolution. Science 318 (5849): 430–433.

43 43 Aiken, J.D. and Finke, R.G. (1999). A review of modern transition‐metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 145 (1): 1–44.

44 44 Schmid, G., Pfeil, R., Boese, R. et al. (1981). Au55{P(C6H5)3}12Cl6 – a gold cluster of an exceptional size. Chem. Ber. Recl. 114 (11): 3634–3642.

45 45 Weare, W.W., Reed, S.M., Warner, M.G., and Hutchison, J.E. (2000). Improved synthesis of small (d(CORE) approximate to 1.5 nm) phosphine‐stabilized gold nanoparticles. J. Am. Chem. Soc. 122 (51): 12890–12891.

46 46 Rapoport, D.H., Vogel, W., Cölfen, H., and Schlögl, R. (1997). Ligand‐stabilized metal clusters: reinvestigation of the structure of “Au55[P(C6H5)3]12Cl6”. J. Phys. Chem. B 101 (21): 4175–4183.

47 47 Garden, A.L., Pedersen, A., and Jónsson, H. (2018). Reassignment of ‘magic numbers’ for Au clusters of decahedral and FCC structural motifs. Nanoscale 10 (11): 5124–5132.

48 48 Walter, M., Akola, J., Lopez‐Acevedo, O. et al. (2008). A unified view of ligand‐protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U.S.A. 105 (27): 9157–9162.

49 49 Butcher, C.P.G., Dinca, A., Dyson, P.J. et al. (2003). A strategy for generating naked‐metal clusters for gas‐phase reactivity studies by FTICR–MS. Angew. Chem. Int. Ed. 42 (46): 5752–5755.

50 50 Henderson, M.A., Kwok, S., and McIndoe, J.S. (2009). Gas‐phase reactivity of ruthenium carbonyl cluster anions. J. Am. Soc. Mass. Spectrom. 20 (4): 658–666.

51 51 Pignolet, L.H., Aubart, M.A., Craighead, K.L. et al. (1995). Phosphine‐stabilized, platinum–gold and palladium–gold cluster compounds and applications in catalysis. Coord. Chem. Rev. 143: 219–263.

52 52 Castiglioni, M., Deabate, S., Giordano, R. et al. (1998). Homogeneous hydrogenation of alkynes and of 1,4‐cyclohexadiene in the presence of the clusters Ru3(CO)7(μ‐PPh2)2(C6H4), Ru4(CO)11(μ4‐PPh)(C6H4), Ru3(CO)7(μ‐PPh2)2(HC2Ph) and Ru4(CO)11(μ4‐PPh)(C2Ph2). J. Organomet. Chem. 571 (2): 251–260.

53 53 Adams, R.D. (2000). Metal segregation in bimetallic clusters and its possible role in synergism and bifunctional catalysis. J. Organomet. Chem. 600 (1): 1–6.

54 54 Zhu, Y., Qian, H., Drake, B.A., and Jin, R. (2010). Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α,β‐unsaturated ketones and aldehydes. Angew. Chem. Int. Ed. 49 (7): 1295–1298.

55 55 Abdel‐Magied, A.F., Patil, M.S., Singh, A.K. et al. (2015). Synthesis, characterization and catalytic activity studies of rhenium carbonyl complexes containing chiral diphosphines of the Josiphos and Walphos families. J. Cluster Sci. 26 (4): 1231–1252.

56 56 Pelayo, J.J., Valencia, I., Garcia, A.P. et al. (2018). Chirality in bare and ligand‐protected metal nanoclusters. Adv. Phys. 3 (1): 1509727.

57 57 Oliver‐Meseguer, J., Cabrero‐Antonino, J.R., Domínguez, I. et al. (2012). Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338 (6113): 1452–1455.

58 58 Zhang, Q.‐F., Chen, X., and Wang, L.‐S. (2018). Toward solution syntheses of the tetrahedral Au20 pyramid and atomically precise gold nanoclusters with uncoordinated sites. Acc. Chem. Res. 51 (9): 2159–2168.

59 59 Chisholm, D.M. and Scott McIndoe, J. (2008). Charged ligands for catalyst immobilisation and analysis. Dalton Trans. 30: 3933–3945.

60 60 Thomas, J.M., Johnson, B.F.G., Raja, R. et al. (2003). High‐performance nanocatalysts for single‐step hydrogenations. Acc. Chem. Res. 36 (1): 20–30.

61 61 Ichikawa, M. (1992). Metal cluster compounds as molecular precursors for tailored metal catalysts. In: Advances in Catalysis, vol. 38 (eds. D.D. Eley, H. Pines and P.B. Weisz), 283–400. Academic Press.

62 62 Gates, B.C. (1995). Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95 (3): 511–522.

63 63 Kulkarni, A., Lobo‐Lapidus, R.J., and Gates, B.C. (2010). Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 46 (33): 5997–6015.

64 64 Shephard, D.S., Maschmeyer, T., Johnson, B.F.G. et al. (1997). Bimetallic nanoparticle catalysts anchored inside mesoporous silica. Angew. Chem. Int. Ed. Engl. 36 (20): 2242–2245.

65 65 Shephard, D.S., Maschmeyer, T., Sankar, G. et al. (1998). Preparation, characterisation and performance of encapsulated copper–ruthenium bimetallic catalysts derived from molecular cluster carbonyl precursors. Chem. Eur. J. 4 (7): 1214–1224.

66 66 Zhou, W., Thomas, J.M., Shephard, D.S. et al. (1998). Ordering of ruthenium cluster carbonyls in mesoporous silica. Science 280 (5364): 705–708.

67 67 Turner, M., Golovko, V.B., Vaughan, O.P.H. et al. (2008). Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55‐atom clusters. Nature 454 (7207): 981–984.

68 68 Menard, L.D., Xu, F., Nuzzo, R.G., and Yang, J.C. (2006). Preparation of TiO2‐supported Au nanoparticle catalysts from a Au13 cluster precursor: ligand removal using ozone exposure versus a rapid thermal treatment. J. Catal. 243 (1): 64–73.

69 69 Liu, Y., Tsunoyama, H., Akita, T., and Tsukuda, T. (2009). Preparation of ∼1 nm gold clusters confined within mesoporous silica and microwave‐assisted catalytic application for alcohol oxidation. J. Phys. Chem. C 113 (31): 13457–13461.

70 70 Liu, Y.M., Tsunoyama, H., Akita, T. et al. (2011). Aerobic oxidation of cyclohexane catalyzed by size‐controlled Au clusters on hydroxyapatite: size effect in the sub‐2 nm regime. ACS Catal. 1 (1): 2–6.

71 71 Azubel, M., Koh, A.L., Koyasu, K. et al. (2017). Structure determination of a water‐soluble 144‐gold atom particle at atomic resolution by aberration‐corrected electron microscopy. ACS Nano 11 (12): 11866–11871.

72 72 Al Qahtani, H.S., Kimoto, K., Bennett, T. et al. (2016). Atomically resolved structure of ligand‐protected Au9 clusters on TiO2 nanosheets using aberration‐corrected STEM. J. Chem. Phys. 144 (11): 114703.

73 73 Yamazoe, S., Yoskamtorn, T., Takano, S. et al. (2016). Controlled synthesis of carbon‐supported gold clusters for rational catalyst design. Chem. Rec. 16 (5): 2338–2348.

74 74 Donoeva, B.G., Ovoshchnikov, D.S., and Golovko, V.B. (2013). Establishing a Au nanoparticle size effect in the oxidation of cyclohexene using gradually changing Au catalysts. ACS Catal. 3 (12): 2986–2991.

75 75 Negishi, Y., Matsuura, Y., Tomizawa, R. et al. (2015). Controlled loading of small Aun clusters (n = 10–39) onto BaLa4Ti4O15 photocatalysts: toward an understanding of size effect of cocatalyst on water‐splitting photocatalytic activity. J. Phys. Chem. C 119 (20): 11224–11232.

76 76 Ovoshchnikov, D.S., Donoeva, B.G., Williamson, B.E., and Golovko, V.B. (2014). Tuning the selectivity of a supported gold catalyst in solvent‐ and radical initiator‐free aerobic oxidation of cyclohexene. Catal. Sci. Technol. 4 (3): 752–757.

77 77 Kurashige, W., Kumazawa, R., Ishii, D. et al. (2018). Au25‐loaded BaLa4Ti4O15 water‐splitting photocatalyst with enhanced activity and durability produced using new chromium oxide shell formation method. J. Phys. Chem. C 122 (25): 13669–13681.

78 78 Buchwalter, P., Rosé, J., and Braunstein, P. (2015). Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 115 (1): 28–126.

79 79 Liu, L. and Corma, A. (2018). Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118 (10): 4981–5079.

80 80 Zanella, R., Giorgio, S., Shin, C.‐H. et al. (2004). Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition‐precipitation with NaOH and urea. J. Catal. 222 (2): 357–367.

81 81 Sachtler, W.M.H. and Zhang, C.Z. (2008). Metal clusters in zeolites. In: Handbook of Heterogeneous Catalysis, vol. 1 (eds. G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp), 510–522. Wiley‐VCH.

82 82 Fortea‐pérez, F.R., Mon, M., Ferrando‐soria, J. et al. (2017). The MOF‐driven synthesis of supported palladium clusters with catalytic activity for carbene‐mediated chemistry. Nat. Mater. 16 (7): 760–766.

83 83 Grundner, S., Markovits, M.A.C., Li, G. et al. (2015). Single‐site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6: 7546.

84 84 Vogiatzis, K.D., Li, G., Hensen, E.J.M. et al. (2017). Electronic structure of the [Cu3(μ‐O)3]2+ cluster in mordenite zeolite and its effects on the methane to methanol oxidation. J. Phys. Chem. C 121 (40): 22295–22302.

85 85 Tomkins, P., Mansouri, A., Bozbag, S.E. et al. (2016). Isothermal cyclic conversion of methane into methanol over copper‐exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55 (18): 5467–5471.

86 86 Narsimhan, K., Iyoki, K., Dinh, K., and Román‐Leshkov, Y. (2016). Catalytic oxidation of methane into methanol over copper‐exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2 (6): 424–429.

87 87 Liu, L., Zakharov, D.N., Arenal, R. et al. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9 (1): 574.

88 88 Carvill, B.T., Lerner, B.A., Adelman, B.J. et al. (1993). Increased catalytic activity caused by local destruction of linear zeolite channels: effect of reduction temperature on heptane conversion over platinum supported in H‐mordenite. J. Catal. 144 (1): 1–8.

Heterogeneous Catalysts

Подняться наверх