Читать книгу Clinical Pancreatology for Practising Gastroenterologists and Surgeons - Группа авторов - Страница 159

References

Оглавление

1 1 Mukherjee R, Nunes Q, Huang W, Sutton R. Precision medicine for acute pancreatitis: current status and future opportunities. Precis Clin Med 2019; 2(2):81–86.

2 2 Abu‐El‐Haija M, Gukovskaya AS, Andersen DK, et al. Accelerating the drug delivery pipeline for acute and chronic pancreatitis: summary of the Working Group on Drug Development and Trials in Acute Pancreatitis at the National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47(10):1185–1192.

3 3 Pavlidis P, Crichton S, Lemmich Smith J, et al. Improved outcome of severe acute pancreatitis in the intensive care unit. Crit Care Res Pract 2013; 2013:897107.

4 4 Skouras C, Hayes AJ, Williams L, et al. Early organ dysfunction affects long‐term survival in acute pancreatitis patients. HPB (Oxford) 2014; 16(9):789–796.

5 5 Leach SD, Modlin IM, Scheele GA, Gorelick FS. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin. J Clin Invest 1991; 87(1):362–366.

6 6 Pandol SJ, Saluja AK, Imrie CW, Banks PA. Acute pancreatitis: bench to the bedside. Gastroenterology 2007; 132(3):1127–1151.

7 7 Petersen OH, Sutton R. Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends Pharmacol Sci 2006; 27(2):113–120.

8 8 Ward JB, Petersen OH, Jenkins SA, Sutton R. Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet 1995; 346(8981):1016–1019.

9 9 Criddle DN, Murphy J, Fistetto G, et al. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastoenterology 2006; 130(3):781–793.

10 10 Husain SZ, Prasad P, Grant WM, et al. The ryanodine receptor mediates early zymogen activation in pancreatitis. Proc Natl Acad Sci USA 2005; 102(40):14386–14391.

11 11 Raraty M, Ward J, Erdemli G, et al. Calcium‐dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci USA 2000; 97(24):13126–13131.

12 12 Mukherjee R, Criddle DN, Gukovskaya A, et al. Mitochondrial injury in pancreatitis. Cell Calcium 2008; 44(1):14–23.

13 13 Mukherjee R, Mareninova OA, Odinokova IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut 2016; 65(8):1333–1346.

14 14 Kang R, Lotze MT, Zeh HJ, et al. Cell death and DAMPs in acute pancreatitis. Mol Med 2014; 20:466–477.

15 15 Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg 2002; 9(4):401–410.

16 16 Carafoli E, Krebs J. Why calcium? How calcium became the best communicator. J Biol Chem 2016; 291(40):20849–20857.

17 17 Voronina S, Longbottom R, Sutton R, et al. Bile acids induce calcium signals in mouse pancreatic acinar cells: implications for bile‐induced pancreatic pathology. J Physiol 2002; 540(1):49–55.

18 18 Derler I, Schindl R, Fritsch R, et al. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 2013; 53(2):139–151.

19 19 Gerasimenko JV, Gryshchenko O, Ferdek PE, et al. Ca2+ release‐activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci USA 2013; 110(32):13186–13191.

20 20 Lur G, Haynes LP, Prior IA, et al. Ribosome‐free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP(3) receptors. Curr Biol 2009; 19(19):1648–1653.

21 21 Muik M, Schindl R, Fahrner M, Romanin C. Ca2+ release‐activated Ca2+ (CRAC) current, structure, and function. Cell Mol Life Sci 2012; 69(24):4163–4176.

22 22 Parekh AB. Store‐operated CRAC channels: function in health and disease. Nat Rev Drug Discov 2010; 9(5):399–410.

23 23 Stauderman KA. CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74:147–159.

24 24 Ishikawa J, Ohga K, Yoshino T, et al. A pyrazole derivative, YM‐58483, potently inhibits store‐operated sustained Ca2+ influx and IL‐2 production in T lymphocytes. J Immunol 2003; 170(9):4441–4449.

25 25 Rahman S, Rahman T. Unveiling some FDA‐approved drugs as inhibitors of the store‐operated Ca2+ entry pathway. Sci Rep 2017; 7(1):12881.

26 26 Wen L, Voronina S, Javed MA, et al. Inhibitors of ORAI1 prevent cytosolic calcium‐associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 2015; 149(2):481–492.e7.

27 27 Rice LV, Bax HJ, Russell LJ, et al. Characterization of selective calcium‐release activated calcium channel blockers in mast cells and T‐cells from human, rat, mouse and guinea‐pig preparations. Eur J Pharmacol 2013; 704(1–3):49–57.

28 28 Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology 2013; 144(6):1180–1193.

29 29 Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi‐osmotic type of mechanism. Nature 1961; 191:144–148.

30 30 Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004; 427(6972):360–364.

31 31 Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005; 434(7033):658–662.

32 32 Broekemeier KM, Dempsey ME, Pfeiffer DR. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 1989; 264(14):7826–7830.

33 33 Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 2015; 78:129–141.

34 34 Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D‐dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434(7033):652–658.

35 35 Booth DM, Murphy JA, Mukherjee R, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology 2011; 140(7):2116–2125.

36 36 Shalbueva N, Mareninova OA, Gerloff A, et al. Effects of oxidative alcohol metabolism on the mitochondrial permeability transition pore and necrosis in a mouse model of alcoholic pancreatitis. Gastroenterology 2013; 144(2):437–446.e6.

37 37 Basso E, Fante L, Fowlkes J, et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 2005; 280(19):18558–18561.

38 38 Luvisetto S, Basso E, Petronilli V, et al. Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult‐onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience 2008; 155(3):585–596.

39 39 Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: a molecular lesion with multiple drug targets. Trends Pharmacol Sci 2019; 40(1):50–70.

40 40 Rao VK, Carlson EA, Yan SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta 2014; 1842(8):1267–1272.

41 41 Shore ER, Awais M, Kershaw NM, et al. small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis. J Med Chem 2016; 59(6):2596–2611.

42 42 Shum LC, White NS, Nadtochiy SM, et al. Cyclophilin D knock‐out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone. PLoS One 2016; 11(5):e0155709.

43 43 Jin L, Harrison SC. Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin. Proc Natl Acad Sci USA 2002; 99(21):13522–13526.

44 44 Schlatter D, Thoma R, Kung E, et al. Crystal engineering yields crystals of cyclophilin D diffracting to 1.7 Å resolution. Acta Crystallogr D Biol Crystallogr 2005; 61(5):513–519.

45 45 Mackman RL, Steadman VA, Dean DK, et al. Discovery of a potent and orally bioavailable cyclophilin inhibitor derived from the sanglifehrin macrocycle. J Med Chem 2018; 61(21):9473–9499.

46 46 Fancelli D, Abate A, Amici R, et al. Cinnamic anilides as new mitochondrial permeability transition pore inhibitors endowed with ischemia–reperfusion injury protective effect in vivo. J Med Chem 2014; 57(12):5333–5347.

47 47 Guichou JF, Viaud J, Mettling C, et al. Structure‐based design, synthesis, and biological evaluation of novel inhibitors of human cyclophilin A. J Med Chem 2006; 49(3):900–910.

48 48 Roy S, Sileikyte J, Neuenswander B, et al. N‐Phenylbenzamides as potent inhibitors of the mitochondrial permeability transition pore. ChemMedChem 2016; 11(3):283–288.

49 49 Marta K, Szabo AN, Pecsi D, et al. High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): protocol of a multicentre randomised double‐blind clinical trial. BMJ Open 2017; 7(9):e015874.

50 50 Wang S, Ding W‐X. Does autophagy promote or protect against the pathogenesis of pancreatitis? Gastroenterology 2018; 155(4):1273.1274.

51 51 Gukovskaya AS, Gukovsky I. Autophagy and pancreatitis. Am J Physiol 2012; 303(9):G993–G1003.

52 52 Gukovsky I, Li N, Todoric J, et al. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144(6):1199–1209.e4.

53 53 Mareninova OA, Hermann K, French SW, et al. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest 2009; 119(11):3340–3355.

54 54 Ropolo A, Grasso D, Vaccaro MI. Measuring autophagy in pancreatitis. Methods Mol Biol 2019; 1880:541–554.

55 55 Hashimoto D, Ohmuraya M, Hirota M, et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 2008; 181(7):1065–1072.

56 56 Ohmuraya M, Yamamura K‐i. Autophagy and acute pancreatitis: a novel autophagy theory for trypsinogen activation. Autophagy 2008; 4(8):1060–1062.

57 57 Chinzei R, Masuda A, Nishiumi S, et al. Vitamin K3 attenuates cerulein‐induced acute pancreatitis through inhibition of the autophagic pathway. Pancreas 2011; 40(1):84–94.

58 58 Wan J, Chen J, Wu D, et al. Regulation of autophagy affects the prognosis of mice with severe acute pancreatitis. Dig Dis Sci 2018; 63(10):2639–2650.

59 59 Yang S, Imamura Y, Jenkins RW, et al. Autophagy inhibition dysregulates TBK1 signaling and promotes pancreatic inflammation. Cancer Immunol Res 2016; 4(6):520–530.

60 60 Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterolog. 2018; 154(3):689–703.

61 61 Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12(1):1–222.

62 62 Piplani H, Marek‐Iannucci S, Sin J, et al. Simvastatin induces autophagic flux to restore cerulein‐impaired phagosome–lysosome fusion in acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2019; 1865(11):165530.

63 63 Uhl W, Anghelacopoulos SE, Friess H, Buchler MW. The role of octreotide and somatostatin in acute and chronic pancreatitis. Digestion 1999; 60(Suppl 2):23–31.

64 64 Moggia E, Koti R, Belgaumkar AP, et al. Pharmacological interventions for acute pancreatitis. Cochrane Database Syst Rev 2017;(4):CD011384.

65 65 Halangk W, Lerch MM, Brandt‐Nedelev B, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 2000; 106(6):773–781.

66 66 Sendler M, Maertin S, John D, et al. Cathepsin B activity initiates apoptosis via digestive protease activation in pancreatic acinar cells and experimental pancreatitis. J Biol Chem 2016; 291(28):14717–14731.

67 67 Lagoo JY, D’Souza MC, Kartha A, Kutappa AM. Role of ulinastatin, a trypsin inhibitor, in severe acute pancreatitis in critical care setting: a retrospective analysis. J Crit Care 2018; 45:27–32.

68 68 Yuan J, Liu Y, Tan T, et al. Protein kinase D regulates cell death pathways in experimental pancreatitis. Front Physiol 2012; 3:60.

69 69 Yuan J, Tan T, Geng M, et al. Novel small molecule inhibitors of protein kinase D suppress NF‐κB activation and attenuate the severity of rat cerulein pancreatitis. Front Physiol 2017; 8:1014.

70 70 Gukovskaya AS, Gukovsky I, Zaninovic V, et al. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor‐alpha. Role in regulating cell death and pancreatitis. J Clin Invest 1997; 100(7):1853–1862.

71 71 Gu H, Werner J, Bergmann F, et al. Necro‐inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis. Cell Death Dis 2013; 4:e816.

72 72 Yu G, Wan R, Hu Y, et al. Pancreatic acinar cells‐derived cyclophilin A promotes pancreatic damage by activating NF‐κB pathway in experimental pancreatitis. Biochem Biophys Res Commun 2014; 444(1):75–80.

73 73 Ou X, Cheng Z, Liu T, et al. Circulating histone levels reflect disease severity in animal models of acute pancreatitis. Pancreas 2015; 44(7):1089–1095.

74 74 Schneider L, Jabrailova B, Strobel O, et al. Inflammatory profiling of early experimental necrotizing pancreatitis. Life Sci 2015; 126:76–80.

75 75 Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10(12):826–837.

76 76 Sharif R, Dawra R, Wasiluk K, et al. Impact of toll‐like receptor 4 on the severity of acute pancreatitis and pancreatitis‐associated lung injury in mice. Gut 2009; 58(6):813–819.

77 77 Hoque R, Sohail M, Malik A, et al. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology 2011; 141(1):358–369.

78 78 Schnekenburger J, Schick V, Kruger B, et al. The calcium binding protein S100A9 is essential for pancreatic leukocyte infiltration and induces disruption of cell–cell contacts. J Cell Physiol 2008; 216(2):558–567.

79 79 Kang R, Zhang Q, Hou W, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 2014; 146(4):1097–1107.

80 80 Liu T, Huang W, Szatmary P, et al. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br J Surg 2017; 104(9):1215–1225.

81 81 Szatmary P, Liu T, Abrams ST, et al. Systemic histone release disrupts plasmalemma and contributes to necrosis in acute pancreatitis. Pancreatology 2017; 17(6):884–892.

82 82 Mole DJ, Webster SP, Uings I, et al. Kynurenine‐3‐monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nat Med 2016; 22(2):202–209.

83 83 Liddle J, Beaufils B, Binnie M, et al. The discovery of potent and selective kynurenine 3‐monooxygenase inhibitors for the treatment of acute pancreatitis. Bioorg Med Chem Lett 2017; 27(9):2023–2028.

84 84 Blinman TA, Gukovsky I, Mouria M, et al. Activation of pancreatic acinar cells on isolation from tissue: cytokine upregulation via p38 MAP kinase. Am J Physiol 2000; 279(6):C1993–C2003.

85 85 Zaninovic V, Gukovskaya AS, Gukovsky I, et al. Cerulein upregulates ICAM‐1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells. Am J Physiol 2000; 279(4):G666–G676.

86 86 Lundberg AH, Granger N, Russell J, et al. Temporal correlation of tumor necrosis factor‐alpha release, upregulation of pulmonary ICAM‐1 and VCAM‐1, neutrophil sequestration, and lung injury in diet‐induced pancreatitis. J Gastrointest Surg 2000; 4(3):248–257.

87 87 Frossard JL, Saluja A, Bhagat L, et al. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis‐associated lung injury. Gastroenterology 1999; 116(3):694–701.

88 88 Lundberg AH, Eubanks JW III, Henry J, et al. Trypsin stimulates production of cytokines from peritoneal macrophages in vitro and in vivo. Pancreas 2000; 21(1):41–51.

89 89 Gloor B, Blinman TA, Rigberg DA, et al. Kupffer cell blockade reduces hepatic and systemic cytokine levels and lung injury in hemorrhagic pancreatitis in rats. Pancreas 2000; 21(4):414–420.

90 90 Gloor B, Todd KE, Lane JS, et al. Hepatic Kupffer cell blockade reduces mortality of acute hemorrhagic pancreatitis in mice. J Gastrointest Surg 1998; 2(5):430–435.

91 91 Huber W, Algul H, Lahmer T, et al. Pancreatitis cytosorbents (CytoSorb) inflammatory cytokine removal: a prospective study (PACIFIC). Medicine (Baltimore) 2019; 98(4):e13044.

92 92 Andrade‐Davila VF, Chavez‐Tostado M, Davalos‐Cobian C, et al. Rectal indomethacin versus placebo to reduce the incidence of pancreatitis after endoscopic retrograde cholangiopancreatography: results of a controlled clinical trial. BMC Gastroenterol 2015; 15:85.

93 93 Mansour‐Ghanaei F, Joukar F, Taherzadeh Z, et al. Suppository naproxen reduces incidence and severity of post‐endoscopic retrograde cholangiopancreatography pancreatitis: randomized controlled trial. World J Gastroenterol 2016; 22(21):5114–5121.

94 94 Johnson CD, Kingsnorth AN, Imrie CW, et al. Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis. Gut 2001; 48(1):62–69.

95 95 Folch E, Closa D, Prats N, et al. Leukotriene generation and neutrophil infiltration after experimental acute pancreatitis. Inflammation 1998; 22(1):83–93.

96 96 Inoue S, Nakao A, Kishimoto W, et al. Anti‐neutrophil antibody attenuates the severity of acute lung injury in rats with experimental acute pancreatitis. Arch Surg 1995; 130(1):93–98.

97 97 Murakami H, Nakao A, Kishimoto W, et al. Detection of O2– generation and neutrophil accumulation in rat lungs after acute necrotizing pancreatitis. Surgery 1995; 118(3):547–554.

98 98 Bhatia M, Saluja AK, Hofbauer B, et al. The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis‐associated lung injury. Int J Pancreatol 1998; 24(2):77–83.

99 99 Steele CW, Karim SA, Foth M, et al. CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. J Pathol 2015; 237(1):85–97.

100 100 Malla SR, Karrman Mardh C, Gunther A, et al. Effect of oral administration of AZD8309, a CXCR2 antagonist, on the severity of experimental pancreatitis. Pancreatology 2016; 16(5):761–769.

101 101 Bhatia M, Hegde A. Treatment with antileukinate, a CXCR2 chemokine receptor antagonist, protects mice against acute pancreatitis and associated lung injury. Regul Pept 2007; 138(1):40–48.

102 102 Irie Y, Tsubota M, Ishikura H, et al. Macrophage‐derived HMGB1 as a pain mediator in the early stage of acute pancreatitis in mice: targeting RAGE and CXCL12/CXCR4 axis. J Neuroimmune Pharmacol 2017; 12(4):693–707.

103 103 Wetterholm E, Linders J, Merza M, et al. Platelet‐derived CXCL4 regulates neutrophil infiltration and tissue damage in severe acute pancreatitis. Transl Res 2016; 176:105–118.

104 104 Sakuma Y, Kodama Y, Eguchi T, et al. Chemokine CXCL16 mediates acinar cell necrosis in cerulein induced acute pancreatitis in mice. Sci Rep 2018; 8(1):8829.

105 105 Merza M, Hartman H, Rahman M, et al. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 2015; 149(7):1920–1931.e8.

106 106 Leppkes M, Maueroder C, Hirth S, et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat Commun 2016; 7:10973.

107 107 Madhi R, Rahman M, Taha D, et al. Targeting peptidylarginine deiminase reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis. J Cell Physiol 2019; 234(7):11850–11860.

108 108 Murthy P, Singhi AD, Ross MA, et al. Enhanced neutrophil extracellular trap formation in acute pancreatitis contributes to disease severity and is reduced by chloroquine. Front Immunol 2019; 10:28.

109 109 Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245(4922):1059–1065.

110 110 Gonska T. Genetic predisposition in pancreatitis. Curr Opin Pediatr 2018; 30(5):660–664.

111 111 Hegyi P, Wilschanski M, Muallem S, et al. CFTR: a new horizon in the pathomechanism and treatment of pancreatitis. Rev Physiol Biochem Pharmacol 2016; 170:37–66.

112 112 Ooi CY, Durie PR. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in pancreatitis. J Cyst Fibros 2012; 11(5):355–362.

113 113 Kumar S, Ooi CY, Werlin S, et al. Risk factors associated with pediatric acute recurrent and chronic pancreatitis: lessons from INSPPIRE. JAMA Pediatr 2016; 170(6):562–569.

114 114 Madacsy T, Pallagi P, Maleth J. Cystic fibrosis of the pancreas: the role of CFTR channel in the regulation of intracellular Ca2+ signaling and mitochondrial function in the exocrine pancreas. Front Physiol 2018; 9:1585.

115 115 Zeng M, Szymczak M, Ahuja M, et al. Restoration of CFTR activity in ducts rescues acinar cell function and reduces inflammation in pancreatic and salivary glands of mice. Gastroenterology 2017; 153(4):1148–1159.

116 116 Van Goor F, Hadida S, Grootenhuis PD, et al. Correction of the F508del‐CFTR protein processing defect in vitro by the investigational drug VX‐809. Proc Natl Acad Sci USA 2011; 108(46):18843–18848.

Clinical Pancreatology for Practising Gastroenterologists and Surgeons

Подняться наверх