Читать книгу Design and Development of Efficient Energy Systems - Группа авторов - Страница 77

References

Оглавление

1. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P.A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zhang, Tensor Flow: A system for large-scale machine learning, OSDI, 2016.

2. Aniket, The Role of IoT in Healthcare: Applications and Implementation, finoIT, https://www.finoit.com/blog/the-role-of-iot-in-healthcare-space/, 2020.

3. Y. Ai, M. Peng and K, Zhang, Edge computing technologies for Internet of Things: a primer, Digital Communications and Networks, Vol. 4(2), P. 77-86, 2018.

4. I. Azimi, J. Takalo-Mattila, A. Anzanpour, A.M. Rahmani, J.P. Soininen and P. Liljeberg, Empowering healthcare IoT systems with hierarchical edge-based deep learning, In IEEE/ ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), IEEE, P. 63–68, 2018.

5. Z. Becvar and P. Mach Mobile Edge Computing: A Survey on Architecture and Computation Offloading, IEEE Communications Surveys and Tutorials, Vol. 19(3) p. 1628 - 1656, 2017.

6. L. Bote-Curiel, S. Muñoz-Romero, A. Gerrero-Curieses and J.L. Rojo-Álvarez, Deep Learning and Big Data in Healthcare: A Double Review for Critical Beginners, Applied Science, Vol. 9(2331), 2019.

7. L. Chen, S. Zhou and J. Xu, Energy Efficient Mobile Edge Computing in Dense Cellular Networks, IEEE ICC Green Communications Systems and Networks Symposium, 2017.

8. S.K. Dhar, S.S. Bhunia and N. Mukherjee, Interference Aware Scheduling of Sensors in IoT Enabled Health-Care Monitoring Systems, Fourth International Conference of Emerging Applications of Information Technology, P. 152 – 157, 2014.

9. P. Dineshkumar, R. SenthilKumar, K. Sujatha, R.S. Ponmagal, V.N. Rajavarman, Big data Analytics of IoT based Health Care Monitoring System, IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), Indian Institute of Technology (Banaras Hindu University) Varanasi, India, P. 55 – 60, 2016.

10. K. Dolui and S.K. Datta, Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing, Conference on Global Internet of Things Summit (GIoTS) P. 1-6 2017.

11. E.O. Dowd, How Edge Computing Enhances Health IT Infrastructure, HIT Infrastructure, https://hitinfrastructure.com/news/how-edge-computing-enhances-health-it-infrastructure, 2018.

12. B. Felter, 5 Use Cases You Need to Know for Edge Computing and Healthcare, Vxchnge, https://www.vxchnge.com/blog/edge-computing-use-cases-healthcare, 2019.

13. A. Garcia-Saavedra, G. Iosifidis, X. Costa-Pérez, and D.J. Leith, Joint Optimization of Edge Computing Architectures and Radio Access Networks, IEEE Journal on Selected Areas in Communications, P. 99, 2018.

14. T. N. Gia, I.B. Dhaou, M. Ali, A.M. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen, Energy efficient fog-assisted IoT system for monitoring diabetic patients with cardiovascular disease, Future Generation Computer Systems, Vol. 93, P. 198-211, 2019.

15. Y. Hao, Y. Jiang, M.S. Hossain, M.F. Alhamid and S.U. Amin, Learning for smart edge: cognitive learning-based computation offloading, In Mobile Networks and Applications, Springer, P. 1–7, 2018.

16. M. Hasan, Top 10 Potential Applications of Machine Learning in Healthcare, UbuntuPIT, https://www.ubuntupit.com/top-10-potential-applications-of-machine-learning-in-healthcare/, 2019.

17. IoT & Edge Technology: Transforming the Global Supply Chain, ACSIS, https://acsisinc.com/blog/iot-edge-technology-transforming-the-global-supply-chain/, 2020.

18. F. Jalali, S. Khodadustan, C. Gray, K. Hinton and F. Suits, Greening IoT with fog: a survey. In 2017 IEEE International Conference on Edge Computing (EDGE), P. 25–31, 2017.

19. M.R. Kinthada, S, Bodda, and S.B.K. Mande, eMedicare: mHealth solution for Patient Medication Guidance and Assistance, International conference on Signal Processing, Communication, Power and Embedded System (SCOPES), P. 657-661, 2016.

20. R.N. Kirtana and Y.V. Lokeswari, An IoT Based Remote HRV Monitoring System for Hypertensive Patients, IEEE International Conference on Computer, Communication, and Signal Processing, 2017.

21. J.H. Ko, T. Na, M.F. Amir and S. Mukhopadhyay, Edge-host partitioning of deep neural networks with feature space encoding for resource-constrained internet-of-things platforms, 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), IEEE, P. 1–6, 2018.

22. T. Leppänen and J. Riekki, Energy Efficient Opportunistic Edge Computing for the Internet of Things. Web Intelligence and Agent Systems. Vol. 17(3). 2018.

23. S. Madakam, R. Ramaswamy and Tripathi, Internet of Things (IoT): A Literature Review, Journal of Computer and Communications, Vol. 3, P. 164-173, 2015.

24. Y. Mao. C. You, J. Zhang, K. Huang and K.B. Letaief, A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Communications Surveys & Tutorials, P. 9, 2017.

25. K. Matthews, 6 Exciting IoT Use Cases in Healthcare, IoTforall, https://www.iotforall.com/exciting-iot-use-cases-in-healthcare/, 2020.

26. P. Miller, What is edge computing?, The Verge, https://www.theverge.com/circuit-breaker/2018/5/7/17327584/edge-computing-cloud-google-microsoft-apple-amazon, 2018.

27. J. Mocnej, M. Miškuf, P. Papcun, I. Zolotová, Impact of Edge Computing Paradigm on Energy Consumption in IoT, IFAC-PapersOnLine, Elsevier, Vol. 51(6), P. 162-167, 2018.

28. N. Moghim and D.W. Corne, Predicting epileptic seizures in advance, PLoS ONE, Vol. 9(6), Article ID e99334, 2014.

29. J. Ocampos, The Future of IoT in 2020, Ingeniumweb, https://www.ingeniumweb.com/blog/post/the-future-of-iot-in-2020/4924/, 2020.

30. R. Parikh and V. Chemitiganti, Edge Computing: Challenges and Opportunities, Platform 9, https://platform9.com/blog/edge-computing-challenges-and-opportunities/, 2019.

31. S. Pinto, J. Cabral, T. Gomes, We-Care: An IoT-based Health Care System for Elderly People, IEEE, P 1378 – 1383, 2017.

32. A. Qayyum, J. Qadir, M. Bilal, and A. Al-Fuqaha, Secure and Robust Machine Learning for Healthcare: A Survey, arXiv: 2001.08103v1 [cs.LG], 2020.

33. J.P. Queralta, T.N. Gia, H. Tenhunen, T. Westerlund, Edge-AI in LoRa-based health monitoring: fall detection system with fog computing and LSTM recurrent neural networks. 42nd International Conference on Telecommunications and Signal Processing (TSP). IEEE, P. 601–604, 2019.

34. P. Raj and, J. Pushpa, Expounding the edge/fog computing infrastructures for data science, In Handbook of Research on Cloud and Fog Computing Infrastructures for Data Science, IGI Global, P. 1–32, 2018.

35. A. Shrimali, Influence of IoT Maturity Model in New Digital Era, DZone, https://dzone.com/articles/influence-of-iot-maturity-model-in-new-digital-wor, 2019.

36. I. Sittón-Candanedo, R.S. Alonso, Ó. García, A.B. Gil, and S. Rodríguez-González, A Review on Edge Computing in Smart Energy by means of a Systematic Mapping Study, Electronics 2020, Vol. 9(1), P. 48, 2019.

37. T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D. Sabella, On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration, IEEE Communications Surveys and Tutorials, Vol. 19(3), P. 1657 - 1681, 2017.

38. S. Tofiq and M. Mohammadi, Epileptic Seizure Detection using Deep Learning Approach, UHD Journal of Science and Technology, Vol. 3(41), P. 41-50, 2019.

39. A. Toor, S. ul Islam, G. Ahmed, S. Jabbar, S. Khalid and A.M. Sharif, Energy efficient edge-of things, EURASIP Journal of Wireless Communication Network, Vol. 2019(1), P. 82, 2019.

40. S. Taherizadeh, A.C. Jones, I. Taylor, Z. Zhao and V. Stankovski, Monitoring self-adaptive applications within edge computing frameworks: A state-of-the-art review, Journal of Systems and Software, Vol. 136, P. 19-38, 2018.

41. The Benefits of Edge Computing vs. Cloud Computing, https://www.rcn.com/business/insights-and-news/insights-articles/edge-computing-vs-cloud-computing/, 2020.

42. S.M. Usman, M. Usman and S. Fong, Epileptic Seizures Prediction Using Machine Learning Methods, Comput. Math Methods Med. 2017, doi: https://doi.org/10.1155/2017/9074759.

43. V. Vippalapalli and S. Ananthula, Internet of things (IoT) based Smart Health Care System, International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), P. 1229 – 1233, 2016.

44. H. Zhangi, F. Guo and H. Ji, Combinational Auction-Based Service Provider Selection in Mobile Edge Computing Networks, Special Section on Emerging Trends, Issues and Challenges in Energy-Efficient Cloud Computing, IEEE Access, Vol. 5. P. 13455-13464, 2017.

*Corresponding author: ishwaryaporkodi6296@gmail.com

Corresponding author: dkesavraj@gmail.com

Design and Development of Efficient Energy Systems

Подняться наверх