Читать книгу Electrical and Electronic Devices, Circuits, and Materials - Группа авторов - Страница 50

References

Оглавление

1. Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797-828.

2. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. (2015). A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 44(21), 7484-7539.

3. Wang, Y., Song, Y., & Xia, Y. (2016). Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 45(21), 5925-5950.

4. Zukalová, M., Kalbác, M., Kavan, L., Exnar, I., & Graetzel, M. (2005). Pseudocapacitive lithium storage in TiO2 (B). Chemistry of Materials, 17(5), 1248-1255.

5. Arya, A., & Sharma, A. L. (2020). A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review. Journal of Materials Science, 55, 6242-6304.

6. Huang, S., Zhu, X., Sarkar, S., & Zhao, Y. (2019). Challenges and opportunities for supercapacitors. APL Materials, 7(10), 100901.

7. Zhang, S., & Pan, N. (2015). Supercapacitors performance evaluation. Advanced Energy Materials, 5(6), 1401401.

8. Meng, F., Li, Q., & Zheng, L. (2017). Flexible fiber-shaped supercapacitors: design, fabrication, and multi-functionalities. Energy Storage Materials, 8, 85-109.

9. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic / Plenum, New York, 1999.

10. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci. 7 (2014) 1597-1614.

11. Sharma, M., & Gaur, A. (2020). Designing of Carbon Nitride Supported ZnCo 2 O 4 Hybrid Electrode for High-Performance Energy Storage Applications. Scientific reports, 10(1), 1-9.

12. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. (2015). A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 44(21), 7484-7539.

13. El-Kady, M. F., Shao, Y., & Kaner, R. B. (2016). Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 1(7), 1-14.

14. Ngai, K. S., Ramesh, S., Ramesh, K., & Juan, J. C. (2016). A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 22(8), 1259-1279.

15. Arya, A., & Sharma, A. L. (2017). Polymer electrolytes for lithium ion batteries: a critical study. Ionics, 23(3), 497-540.

16. Arya, A., & Sharma, A. L. (2017). Insights into the use of polyethylene oxide in energy storage/ conversion devices: a critical review. Journal of Physics D: Applied Physics, 50(44), 443002.

17. MacCallum J R, Vincent CA (Eds.). (1989). Polymer electrolyte reviews (Vol. 2). Springer Science & Business Media, London.

18. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J Phys D Appl Phys 41:223001.

19. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146.

20. Ratner MA, Johansson P, Shriver DF (2000) Polymer electrolytes: Ionic transport mechanisms and relaxation coupling. MRS Bull 25:31–37.

21. Williams ML, Landel RF, Ferry JD (1955) The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids1. Temperature Dependence of Relaxation Mechanisms. J. Am. Chem. Soc 77:3701–370.

22. Watanabe M, Ogata N (1988) Ionic conductivity of polymer electrolytes and future applications. Br polym journal 20:181-192, Baril D (1997) Electrochemistry of liquids vs. solids: Polymer electrolytes. Solid State Ionics 94:35–47.

23. Sen, S., Jayappa, R. B., Zhu, H., Forsyth, M., & Bhattacharyya, A. J. (2016). A single cation or anion dendrimer-based liquid electrolyte. Chemical science, 7(5), 3390-3398.

24. Mindemark, J., Lacey, M. J., Bowden, T., & Brandell, D. (2018). Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 81, 114-143.

25. Song, J. Y., Wang, Y. Y., & Wan, C. C. (1999). Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of power sources, 77(2), 183-197.

26. Z. Xue, D. He, X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A. (2015). 3(38), 19218-19253.

27. Long, L., Wang, S., Xiao, M., & Meng, Y. (2016). Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 4(26), 10038-10069.

28. Arya, A., & Sharma, A. L. (2019). Electrolyte for energy storage/conversion (Li+, Na+, Mg 2+) devices based on PVC and their associated polymer: a comprehensive review. Journal of Solid State Electrochemistry, 23(4), 997-1059.

29. Arya, A., & Sharma, A. L. (2020). Polymer Nanocomposites: synthesis and characterization. In Environmental Nanotechnology Volume 4 (pp. 265-315). Springer, Cham.

30. Croce, F., Curini, R., Martinelli, A., Persi, L., Ronci, F., Scrosati, B., & Caminiti, R. (1999). Physical and chemical properties of nanocomposite polymer electrolytes. Journal of Physical Chemistry B, 103(48), 10632-10638.

31. M. F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. (2019). Nature Energy, 4:16-25.

32. Pal, P., & Ghosh, A. (2018). Highly efficient gel polymer electrolytes for all solid-state electrochemical charge storage devices. Electrochimica Acta, 278, 137-148.

33. A. Yu, I. Roes, A. Davies, Z. Chen, Ultrathin, transparent, and flexible graphene films for super-capacitor application, Appl. Phys. Lett. 96 (2010), 253105.

34. G.A. Tiruye, D. Mu~noz-Torrero, J. Palma, M. Anderson, R. Marcilla, Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids, J. Power Sources 326 (2016) 560e568.

35. Wang, H., Yi, H., Chen, X., & Wang, X. (2014). Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. Journal of Materials Chemistry A, 2(9), 3223-3230.

36. Eilmes, A.; Kubisiak, P. A Quantum-Chemical Study On the Boron Centers in Nonaqueous Electrolyte Solutions and Polymer Electrolytes. Electrochim. Acta 2011, 56, 3219−3224.

37. Du, H., Wu, Z., Xu, Y., Liu, S., & Yang, H. (2020). Poly (3, 4-ethylenedioxythiophene) Based Solid-State Polymer Supercapacitor with Ionic Liquid Gel Polymer Electrolyte. Polymers, 12(2), 297

38. Wu, J.; Gong, X.L.; Fan, Y.C.; Xia, H.S. Physically Crosslinked Poly(vinyl alcohol) Hydrogels with Magnetic Field Controlled Modulus. Soft Matter 2011, 7, 6205–6212.

39. Alexandre, S. A., Silva, G. G., Santamaría, R., Trigueiro, J. P. C., & Lavall, R. L. (2019). A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. Electrochimica Acta, 299, 789-799.

40. Wang, F., Wu, X., Yuan, X., Liu, Z., Zhang, Y., Fu, L., ... & Huang, W. (2017). Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 46(22), 6816-6854.

41. Yan, C., Jin, M., Pan, X., Ma, L., & Ma, X. (2020). A flexible polyelectrolyte-based gel polymer electrolyte for high-performance all-solid-state supercapacitor application. RSC Advances, 10(16), 9299-9308.

42. Senthilkumar, S. T., Selvan, R. K., Ponpandian, N., & Melo, J. S. (2012). Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor. RSC advances, 2(24), 8937-8940.

43. Yadav, N., Yadav, N., Singh, M. K., & Hashmi, S. A. (2019). Nonaqueous, Redox-Active Gel Polymer Electrolyte for High-Performance Supercapacitor. Energy Technology, 7(9), 1900132.

44. Peng, X., Liu, H., Yin, Q., Wu, J., Chen, P., Zhang, G., ... & Xie, Y. (2016). A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature communications, 7, 11782.

45. Lu, C., & Chen, X. (2019). In situ synthesized PEO/NBR composite ionogels for high-performance all-solid-state supercapacitors. Chemical Communications, 55(58), 8470-8473.

46. Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47(16), 2930-2946.

47. Das, S., & Ghosh, A. (2020). Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: Effect of TiO2 and ZnO nanoparticles on electrochemical behavior. Journal of Applied Polymer Science, 137(22), 48757.

48. Pal, P., & Ghosh, A. (2018). Solid-state gel polymer electrolytes based on ionic liquids containing imidazolium cations and tetrafluoroborate anions for electrochemical double layer capacitors: Influence of cations size and viscosity of ionic liquids. Journal of Power Sources, 406, 128-140.

49. Choi, Y. J., Jung, D. S., Han, J. H., Lee, G. W., Wang, S. E., Kim, Y. H., ... & Kim, K. B. (2019). Nanofiber Cellulose-Incorporated Nanomesh Graphene–Carbon Nanotube Buckypaper and Ionic Liquid-Based Solid Polymer Electrolyte for Flexible Supercapacitors. Energy Technology, 7(5), 1900014.

50. Jin, J., Mu, H., Wang, W., Li, X., Cheng, Q., & Wang, G. (2019). Long-life flexible supercapacitors based on nitrogen-doped porous graphene@ π-conjugated polymer film electrodes and porous quasi-solid-state polymer electrolyte. Electrochimica Acta, 317, 250-260.

51. Pal, B., Yang, S., Ramesh, S., Thangadurai, V., & Jose, R. (2019). Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 1(10), 3807-3835.

52. Kang, D. A., Kim, K., Karade, S. S., Kim, H., & Kim, J. H. (2020). High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte. Chemical Engineering Journal, 384, 123308.

53. Sudhakar, Y. N., & Selvakumar, M. (2012). Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochimica acta, 78, 398-405.

54. Tiruye, G. A., Munoz-Torrero, D., Palma, J., Anderson, M., & Marcilla, R. (2015). All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes. Journal of Power Sources, 279, 472-480.

55. Zhong, J., Fan, L. Q., Wu, X., Wu, J. H., Liu, G. J., Lin, J. M., ... & Wei, Y. L. (2015). Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochimica Acta, 166, 150-156.

56. Liew, C. W., Ramesh, S., & Arof, A. K. (2014). Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. International Journal of Hydrogen Energy, 39(6), 2953-2963.

57. Arof, A. K., Kufian, M. Z., Syukur, M. F., Aziz, M. F., Abdelrahman, A. E., & Majid, S. R. (2012). Electrical double layer capacitor using poly (methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit. Electrochimica acta, 74, 39-45.

58. Syahidah, S. N., & Majid, S. R. (2013). Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors. Electrochimica Acta, 112, 678-685.

59. Liew, C. W., Arifin, K. H., Kawamura, J., Iwai, Y., Ramesh, S., & Arof, A. K. (2017). Effect of halide anions in ionic liquid added poly (vinyl alcohol)-based ion conductors for electrical double layer capacitors. Journal of Non-Crystalline Solids, 458, 97-106.

60. Tiruye, G. A., Muñoz-Torrero, D., Palma, J., Anderson, M., & Marcilla, R. (2016). Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids. Journal of Power Sources, 326, 560-568.

61. Kumar, Y., Pandey, G. P., & Hashmi, S. A. (2012). Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes. Journal of Physical Chemistry C, 116(50), 26118-26127.

62. Karaman, B., Çevik, E., & Bozkurt, A. (2019). Novel flexible Li-doped PEO/copolymer electrolytes for supercapacitor application. Ionics, 25(4), 1773-1781.

63. Yu, H., Wu, J., Fan, L., Lin, Y., Xu, K., Tang, Z., ... & Lan, Z. (2012). A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. Journal of Power Sources, 198, 402-407.

* Corresponding author: aniljaglan0581@yahoo.com

Electrical and Electronic Devices, Circuits, and Materials

Подняться наверх