Читать книгу The Handbook of Speech Perception - Группа авторов - Страница 56

REFERENCES

Оглавление

1 Aloni, M., & Dekker, P. (2016). The Cambridge handbook of formal semantics. Cambridge: Cambridge University Press.

2 Ballard, D. H., Hinton, G. E., & Sejnowski, T. J. (1983). Parallel visual computation. Nature, 306, 21–26.

3  Baumann, S., Griffiths, T. D., Sun, L., et al. (2011). Orthogonal representation of sound dimensions in the primate midbrain. Nature Neuroscience, 14, 423–425.

4 Belin, P., Zatorre, R. J., Lafaille, P., et al. (2000). Voice‐selective areas in human auditory cortex. Nature, 403, 309–312.

5 Bizley, J. K., Walker, K. M., Silverman, B. W., et al. (2009). Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. Journal of Neuroscience, 29, 2064–2075.

6 Blakemore, S.‐J., Wolpert, D., & Frith, C. (2000). Why can’t you tickle yourself? NeuroReport, 11, R11–R16.

7 Bogen, J. E., & Bogen, G. (1976). Wernicke’s region – where is it? Annals of the New York Academy of Sciences, 280, 834–843.

8 Bouchard, K. E., Mesgarani, N., Johnson, K., & Chang, E. F. (2013). Functional organization of human sensorimotor cortex for speech articulation. Nature, 495, 327–332.

9 Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25, 6797–6806.

10 Cheung, C., Hamilton, L. S., Johnson, K., & Chang, E. F. (2016). The auditory representation of speech sounds in human motor cortex. Elife, 5, e12577.

11 Clements, G. N. (1985). The geometry of phonological features. Phonology, 2, 225–252.

12 Clements, G. N. (1990). The role of the sonority cycle in core syllabification. Papers in Laboratory Phonology, 1, 283–333.

13 Da Costa, S., van der Zwaag, W., Marques, J. P., et al. (2011). Human primary auditory cortex follows the shape of Heschl’s gyrus. Journal of Neuroscience, 31, 14067–14075.

14 Daunizeau, J., David, O., & Stephan, K. E. (2011). Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage, 58, 312–322.

15 Davis, M. H., & Johnsrude, I. S. (2003). Hierarchical processing in spoken language comprehension. Journal of Neuroscience, 23, 3423–3431.

16 Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz machine. Neural Computation, 7, 889–904.

17 Dean, I., Harper, N., & McAlpine, D. (2005). Neural population coding of sound level adapts to stimulus statistics. Nature Neuroscience, 8, 1684–1689.

18 Delgutte, B. (1997). Auditory neural processing of speech. In W. J. Hardcastle & J. Laver (Eds.), The handbook of phonetic sciences (pp. 507–538). Oxford: Blackwell.

19 Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning‐induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107, 539–551.

20 Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature, 453, 1102–1106.

21 Engineer, C. T., Perez, C. A., Chen, Y. H., et al. (2008). Cortical activity patterns predict speech discrimination ability. Nature Neuroscience, 11, 603–608.

22 Ferry, R. T., & Meddis, R. (2007). A computer model of medial efferent suppression in the mammalian auditory system. Journal of the Acoustical Society of America, 122, 3519–3526.

23 Firth, J. (1957). Papers in linguistics, 1934–1951. Oxford: Oxford University Press.

24 Flinker, A., Chang, E. F., Kirsch, H. E., et al. (2010). Single‐trial speech suppression of auditory cortex activity in humans. Journal of Neuroscience, 30, 16643–16650.

25 Fowler, C. A. (1986). An event approach to the study of speech perception from a direct‐realist perspective. Journal of Phonetics, 14, 3–28.

26 Frisina, R. D. (2001). Subcortical neural coding mechanisms for auditory temporal processing. Hearing Research, 158(1–2), 1–27.

27  Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302.

28 Friston, K., & Kiebel, S. (2009). Predictive coding under the free‐energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1211–1221.

29 Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task‐related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.

30 Garofolo, J. S., Lamel, L. F., Fisher, W. M., et al. (1993). TIMIT Acoustic‐Phonetic Continuous Speech Corpus. Linguistic Data Consortium, from https://catalog.ldc.upenn.edu/LDC93S1.

31 Golding, N. L., & Oertel, D. (2012). Synaptic integration in dendrites: Exceptional need for speed. Journal of Physiology, 590, 5563–5569.

32 Graves, A., & Jaitly, N. (2014). Towards end‐to‐end speech recognition with recurrent neural networks. In ICML’14: Proceedings of the 31st International Conference on Machine Learning, 32(2), 1764–1772.

33 Greenberg, S. (2006). A multi‐tier framework for understanding spoken language. In S. Greenberg & W. A. Ainsworth (Ed.), Listening to speech: An auditory perspective (pp. 411–430). Mahwah, NJ: Lawrence Erlbaum.

34 Grinn, S. K., Wiseman, K. B., Baker, J. A., & Le Prell, C. G. (2017). Hidden hearing loss? No effect of common recreational noise exposure on cochlear nerve response amplitude in humans. Frontiers in Neuroscience, 11, 465.

35 Grose, J. H., Buss, E., & Hall, J. W. (2017). Loud music exposure and cochlear synaptopathy in young adults: Isolated auditory brainstem response effects but no perceptual consequences. Trends in Hearing, 21, 1–18.

36 Heinz, M. G., Colburn, H. S., & Carney, L. H. (2002). Quantifying the implications of nonlinear cochlear tuning for auditory‐filter estimates. Journal of the Acoustical Society of America, 111, 996–1011.

37 Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99.

38 Holst, E. von, & Mittelstaedt, H. (1950). Das eafferenzprinzip. Naturwissenschaften, 37, 464–476.

39 Humphries, C., Liebenthal, E., & Binder, J. R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50, 1202–1211.

40 Huth, A. G., De Heer, W. A., Griffiths, T. L., et al. (2016). Natural speech reveals the semantic maps that tile the human cerebral cortex. Nature, 532, 453–458.

41 Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.

42 Johnsrude, I. S., Mackey, A., Hakyemez, H., et al. (2013). Swinging at a cocktail party: Voice familiarity aids speech perception in the presence of a competing voice. Psychological Science, 24, 1995–2004.

43 Joris, P. X., Smith, P. H., & Yin, T. C. T. (1998). Coincidence detection in the auditory system: 50 years after Jeffress. Neuron, 21, 1235–1238.

44 Jurafsky, D., & Martin, J. H. (2014). Speech and language processing. London: Pearson.

45 Kawato, M., Hayakawa, H., & Inui, T. (1993). A forward‐inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4, 415–422.

46 Kujawa, S. G., & Liberman, M. C. (2015). Synaptopathy in the noise‐exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing Research, 330, 191–199.

47 Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.

48  Leonard, M. K., Baud, M. O., Sjerps, M. J., & Chang, E. F. (2016). Perceptual restoration of masked speech in human cortex. Nature Communications, 7, 13619.

49 Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert‐Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431–461.

50 Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 1–36.

51 Meddis, R., & O’Mard, L. P. (2005). A computer model of the auditory‐nerve response to forward‐masking stimuli. Journal of the Acoustical Society of America, 117, 3787–3798.

52 Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multitalker speech perception. Nature, 485, 233–236.

53 Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343, 1006–1010.

54 Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2008). Phoneme representation and classification in primary auditory cortex. Journal of the Acoustical Society of America, 123, 899–909.

55 Mitchell, T. M., Shinkareva, S. V., Carlson, A., et al. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320, 1191–1195.

56 Müller‐Preuss, P., & Ploog, D. (1981). Inhibition of auditory cortical neurons during phonation. Brain Research, 215, 61–76.

57 Mumford, D. (1992). On the computational architecture of the neocortex. Biological Cybernetics, 66, 241–251.

58 Nelken, I., Bizley, J. K., Nodal, F. R., et al. (2008). Responses of auditory cortex to complex stimuli: Functional organization revealed using intrinsic optical signals. Journal of Neurophysiology, 99, 1928–1941.

59 Parker Jones, O., Seghier, M. L., Duncan, K. J. K., et al. (2013). Auditory–motor interactions for the production of native and nonnative speech. Journal of Neuroscience, 33, 2376–2387.

60 Pasley, B. N., David, S. V., Mesgarani, N., et al. (2012). Reconstructing speech from human auditory cortex. PLOS Biology, 10, e1001251.

61 Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389–443.

62 Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847.

63 Prothero, J. W., & Sundsten, J. W. (1984). Folding of the cerebral cortex in mammals. Brain, Behavior and Evolution, 24, 152–167.

64 Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576–582.

65 Rabinowitz, N. C., Willmore, B. D. B., King, A. J., & Schnupp, J. W. H. (2013). Constructing noise‐invariant representations of sound in the auditory pathway. PLOS biology, 11, e1001710.

66 Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra‐classical receptive‐field effects. Nature Neuroscience, 2, 79–87.

67 Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724.

68 Saussure, F. (1989). Cours de linguistique générale. Wiesbaden: Otto Harrassowitz.

69 Schnupp, J. W., & Carr, C. E. (2009). On hearing with more than one ear: Lessons from evolution. Nature Neuroscience, 12, 692–697.

70 Schnupp, J. W. H., Garcia‐Lazaro, J. A., & Lesica, N. A. (2015). Periodotopy in the gerbil inferior colliculus: Local clustering rather than a gradient map. Frontiers in Neural Circuits, 9, 37.

71 Schreiner, C. E., & Langner, G. (1988). Periodicity coding in the inferior colliculus of the cat II: Topographical organization. Journal of Neurophysiology, 60, 1823–1840.

72 Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400–2406.

73 Stevens, K. N. (1960). Toward a model for speech recognition. Journal of the Acoustical Society of America, 32, 47–55.

74 Stevens, K. N. (2002). Toward a model for lexical access based on acoustic landmarks and distinctive features. Journal of the Acoustical Society of America, 111, 1872–1891.

75 Stuart, A., & Phillips, D. P. (1996). Word recognition in continuous and interrupted broadband noise by young normal‐hearing, older normal‐hearing, and presbyacusic listeners. Ear and Hearing, 17, 478–489.

76 Sumner, C. J., Lopez‐Poveda, E. A., O’Mard, L. P., & Meddis, R. (2002). A revised model of the inner‐hair cell and auditory‐nerve complex. Journal of the Acoustical Society of America, 111, 2178–2188.

77 Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 60–71.

78 Walker, K. M., Bizley, J. K., King, A. J., & Schnupp, J. W. (2011). Multiplexed and robust representations of sound features in auditory cortex. Journal of Neuroscience, 31, 14565–14576.

79 Wernicke, C. (1874). Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer Basis. Breslau: Max Cohn & Weigert.

80 Wicker, B., Keysers, C., Plailly, J., et al. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655–664.

81 Willmore, B. D. B., Schoppe, O., King, A. J., et al. (2016). Incorporating midbrain adaptation to mean sound level improves models of auditory cortical processing. Journal of Neuroscience, 36, 280–289.

82 Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5, 487–494.

83 Zhang, X., & Carney, L. H. (2005). Analysis of models for the synapse between the inner hair cell and the auditory nerve. Journal of the Acoustical Society of America, 118, 1540–1553.

84 Zhang, X., Heinz, M. G., Bruce, I. C., & Carney, L. H. (2001). A phenomenological model for the responses of auditory‐nerve fibers: I. Nonlinear tuning with compression and suppression. Journal of the Acoustical Society of America, 109, 648–670.

85 Journal, M. S. A., Bruce, I. C., & Carney, L. H. (2014). Updated parameters and expanded simulation options for a model of the auditory periphery. Journal of the Acoustical Society of America, 135, 283–286.

The Handbook of Speech Perception

Подняться наверх