Читать книгу Vestibular Disorders - Группа авторов - Страница 38

References

Оглавление

1DeMarcantonio M, Choo DI: Radiographic evaluation of children with hearing loss. Otolaryngol Clin North Am 2015;48:913–932.

2Counter SA, Damberg P, Aski SN, Nagy K, Berglin CE, Laurell G: Experimental fusion of contrast enhanced high-field magnetic resonance imaging and high-resolution micro-computed tomography in imaging the mouse inner ear. Open Neuroimag J 2015;9:7–12.

3Pitris C, Saunders KT, Fujimoto JG, Brezinski ME: High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study. Arch Otolaryngol Head Neck Surg 2001;127:637–642.

4Lin J, Staecker H, Jafri MS: Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation. Ann Otol Rhinol Laryngol 2008;117:341–346.

5Cho NH, Jang JH, Jung W, Kim J: In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope. Opt Express 2014;22:8985–8995.

6Zou J, Lahelma J, Koivisto J, Dhanasingh A, Jolly C, Aarnisalo A, et al: Imaging cochlear implantation with round window insertion in human temporal bones and cochlear morphological variation using high-resolution cone beam CT. Acta Otolaryngol 2015;135:466–472.

7Zou J, Isomäki A, Hirvonen T, Aarnisalo A, Jero J, Pyykkö I: Label-free visualization of cholesteatoma in the mastoid and tympanic membrane using CARS microscopy. J Otol 2016;11:127–133.

8Zou J, Pyykko I, Hyttinen J: Inner ear barriers to nanomedicine-augmented drug delivery and imaging. J Otol 2016;11:165–177.

9Giesemann A, Hofmann E: Some remarks on imaging of the inner ear: options and limitations. Clin Neuroradiol 2015;25(suppl 2):197–203.

10Shibata T, Nagano T: Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus. Nat Med 1996;2:933–935.

11Vogel U: New approach for 3D imaging and geometry modeling of the human inner ear. ORL J Otorhinolaryngol Relat Spec 1999;61:259–267.

12Maillot O, Attye A, Boyer E, Heck O, Kastler A, Grand S, et al: Post traumatic deafness: a pictorial review of CT and MRI findings. Insights Imaging 2016;7:341–350.

13Lane JI, Lindell EP, Witte RJ, DeLone DR, Driscoll CL: Middle and inner ear: improved depiction with multiplanar reconstruction of volumetric CT data. Radiographics 2006;26:115–124.

14Fatterpekar GM, Doshi AH, Dugar M, Delman BN, Naidich TP, Som PM: Role of 3D CT in the evaluation of the temporal bone. Radiographics 2006;26(suppl 1):S117-S132.

15Gnagi SH, Baker TR, Pollei TR, Barrs DM: Analysis of intraoperative radiographic electrode placement during cochlear implantation. Otol Neurotol 2015;36:1045–1047.

16Carlson ML, Leng S, Diehn FE, Witte RJ, Krecke KN, Grimes J, et al: Cochlear implant electrode localization using an ultra-high resolution scan mode on conventional 64-slice and new generation 192-slice multi-detector computed tomography. Otol Neurotol 2017;38:978–984.

17Tavassolie TS, Penninger RT, Zuniga MG, Minor LB, Carey JP: Multislice computed tomography in the diagnosis of superior canal dehiscence: how much error, and how to minimize it? Otol Neurotol 2012;33:215–222.

18Bremke M, Luers JC, Anagiotos A, Gostian AO, Dorn F, Kabbasch C, et al: Comparison of digital volume tomography and high-resolution computed tomography in detecting superior semicircular canal dehiscence – a temporal bone study. Acta Otolaryngol 2015;135:901–906.

19Brantberg K, Greitz D, Pansell T: Subarcuate venous malformation causing audio-vestibular symptoms similar to those in superior canal dehiscence syndrome. Otol Neurotol 2004;25:993–997.

20National Cancer Institute: Radiation Risks and Pediatric Computed Tomography (CT): A Guide for Health Care Providers. 2012. https://wwwcancergov/about-cancer/causes-prevention/risk/radiation/pediatric-ct-scans.

21Brenner D, Elliston C, Hall E, Berdon W: Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176:289–296.

22Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al: Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012;380:499–505.

23Little MP, Hoel DG, Molitor J, Boice JD, Wakeford R, Muirhead CR: New models for evaluation of radiation-induced lifetime cancer risk and its uncertainty employed in the UNSCEAR 2006 report. Radiat Res 2008;169:660–676.

24Brenner D, Elliston C, Hall E, Berdon W: Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176:289–296.

25Nauer CB, Zubler C, Weisstanner C, Stieger C, Senn P, Arnold A: Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality. Neuroradiology 2012;54:247–254.

26Weisstanner C, Mantokoudis G, Huth M, Verma RK, Nauer C, Senn P, et al: Radiation dose reduction in postoperative computed position control of cochlear implant electrodes in lambs – an experimental study. Int J Pediatr Otorhinolaryngol 2015;79:2348–2354.

27Erovic BM, Chan HH, Daly MJ, Pothier DD, Yu E, Coulson C, et al: Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment. Otolaryngol Head Neck Surg 2014;150:107–114.

28Zou J, Hannula M, Lehto K, Feng H, Lahelma J, Aula AS, et al: X-ray microtomographic confirmation of the reliability of CBCT in identifying the scalar location of cochlear implant electrode after round window insertion. Hear Res 2015;326:59–65.

29Kakinuma R, Moriyama N, Muramatsu Y, Gomi S, Suzuki M, Nagasawa H, et al: Ultra-high-resolution computed tomography of the lung: image quality of a prototype scanner. PLoS One 2015;10:e0137165.

30Peltonen LI, Aarnisalo AA, Kortesniemi MK, Suomalainen A, Jero J, Robinson S: Limited cone-beam computed tomography imaging of the middle ear: a comparison with multislice helical computed tomography. Acta Radiol 2007;48:207–212.

31Kurt H, Orhan K, Aksoy S, Kursun S, Akbulut N, Bilecenoglu B: Evaluation of the superior semicircular canal morphology using cone beam computed tomography: a possible correlation for temporomandibular joint symptoms. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117:e280–e288.

32Rafferty MA, Siewerdsen JH, Chan Y, Daly MJ, Moseley DJ, Jaffray DA, et al: Intraoperative cone-beam CT for guidance of temporal bone surgery. Otolaryngol Head Neck Surg 2006;134:801–808.

33Mlynski R, Nguyen TD, Plontke SK, Kosling S: Presentation of floating mass transducer and vibroplasty couplers on CT and cone beam CT. Eur Arch Otorhinolaryngol 2014;271:665–672.

34Razafindranaly V, Truy E, Pialat JB, Martinon A, Bourhis M, Boublay N, et al: Cone beam CT versus multislice CT: radiologic diagnostic agreement in the postoperative assessment of cochlear implantation. Otol Neurotol 2016;37:1246–1254.

35Zhu L, Xie Y, Wang J, Xing L: Scatter correction for cone-beam CT in radiation therapy. Med Phys 2009;36:2258–2268.

36Mail N, Moseley DJ, Siewerdsen JH, Jaffray DA: An empirical method for lag correction in cone-beam CT. Med Phys 2008;35:5187–5196.

37Meilinger M, Schmidgunst C, Schutz O, Lang EW: Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information. Z Med Phys 2011;21:174–182.

38Guldner C, Wiegand S, Weiss R, Bien S, Sesterhenn A, Teymoortash A, et al: Artifacts of the electrode in cochlea implantation and limits in analysis of deep insertion in cone beam tomography (CBT). Eur Arch Otorhinolaryngol 2012;269:767–772.

39Gupta R, Bartling SH, Basu SK, Ross WR, Becker H, Pfoh A, et al: Experimental flat-panel high-spatial-resolution volume CT of the temporal bone. AJNR Am J Neuroradiol 2004;25:1417–1424.

40Diogo I, Franke N, Steinbach-Hundt S, Mandapathil M, Weiss R, Werner JA, et al: Differences of radiological artefacts in cochlear implantation in temporal bone and complete head. Cochlear Implants Int 2014;15:112–117.

41Pearl MS, Roy A, Limb CJ: High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants. AJNR Am J Neuroradiol 2014;35:1202–1208.

42Ruivo J, Mermuys K, Bacher K, Kuhweide R, Offeciers E, Casselman JW: Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol 2009;30:299–303.

43Verbist BM, Frijns JH, Geleijns J, van Buchem MA: Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients. AJNR Am J Neuroradiol 2005;26:424–429.

44Trieger A, Schulze A, Schneider M, Zahnert T, Murbe D: In vivo measurements of the insertion depth of cochlear implant arrays using flat-panel volume computed tomography. Otol Neurotol 2011;32:152–157.

45Struffert T, Hertel V, Kyriakou Y, Krause J, Engelhorn T, Schick B, et al: Imaging of cochlear implant electrode array with flat-detector CT and conventional multislice CT: comparison of image quality and radiation dose. Acta Otolaryngol 2010;130:443–452.

46Zou J, Koivisto J, Lahelma J, Aarnisalo A, Wolff J, Pyykko I: Imaging optimization of temporal bones with cochlear implant using a high-resolution cone beam CT and the corresponding effective dose. Ann Otol Rhinol Laryngol 2015;124:466–473.

47Zou J, Lähelmä J, Aarnisalo A, Pyykko I: Clinically relevant human temporal bone measurements using novel high-resolution cone-beam CT. J Otol 2017;12:9–17.

48Theunisse HJ, Joemai RM, Maal TJ, Geleijns J, Mylanus EA, Verbist BM: Cone-beam CT versus multi-slice CT systems for postoperative imaging of cochlear implantation – a phantom study on image quality and radiation exposure using human temporal bones. Otol Neurotol 2015;36:592–599.

49Yamane H, Iguchi H, Konishi K, Sakamaoto H, Wada T, Fujioka T, et al: Three-dimensional cone beam computed tomography imaging of the membranous labyrinth in patients with Meniere’s disease. Acta Otolaryngol 2014;134:1016–1021.

50Koivisto J, Kiljunen T, Wolff J, Kortesniemi M: Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters. Radiat Prot Dosimetry 2013;157:515–524.

51Kim DS, Rashsuren O, Kim EK: Conversion coefficients for the estimation of effective dose in cone-beam CT. Imaging Sci Dent 2014;44:21–29.

52Daly MJ, Siewerdsen JH, Moseley DJ, Jaffray DA, Irish JC: Intraoperative cone-beam CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm prototype. Med Phys 2006;33:3767–3780.

53Naganawa S, Nakane T, Kawai H, Taoka T, Suzuki K, Iwano S, et al: Visualization of middle ear ossicles in elder subjects with ultra-short echo time MR imaging. Magn Reson Med Sci 2017;16:93–97.

54Naganawa S, Koshikawa T, Nakamura T, Fukatsu H, Ishigaki T, Aoki I: High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material. Eur Radiol 2003;13:2650–2658.

55Naganawa S, Satake H, Kawamura M, Fukatsu H, Sone M, Nakashima T: Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 Tesla. Eur Radiol 2008;18:920–924.

56Naganawa S, Kawai H, Sone M, Nakashima T: Increased sensitivity to low concentration gadolinium contrast by optimized heavily T2-weighted 3D-FLAIR to visualize endolymphatic space. Magn Reson Med Sci 2010;9:73–80.

57Naganawa S, Kawai H, Ikeda M, Sone M, Nakashima T: Imaging of endolymphatic hydrops in 10 minutes: a new strategy to reduce scan time to one third. Magn Reson Med Sci 2015;14:77–83.

58Naganawa S, Nakashima T: Visualization of endolymphatic hydrops with MR imaging in patients with Meniere’s disease and related pathologies: current status of its methods and clinical significance. Jpn J Radiol 2014;32:191–204.

59Nakashima T, Pyykko I, Arroll MA, Casselbrant ML, Foster CA, Manzoor NF, et al: Meniere’s disease. Nat Rev Dis Primers 2016;2:16028.

60Counter SA, Bjelke B, Klason T, Chen Z, Borg E: Magnetic resonance imaging of the cochlea, spiral ganglia and eighth nerve of the guinea pig. Neuroreport 1999;10:473–479.

61Zou J, Pyykko I, Bretlau P, Klason T, Bjelke B: In vivo visualization of endolymphatic hydrops in guinea pigs: magnetic resonance imaging evaluation at 4.7 tesla. Ann Otol Rhinol Laryngol 2003;112:1059–1065.

62Zou J, Pyykko I, Bjelke B, Bretlau P, Tayamaga T: Endolympahtic Hydrops is Caused by Increased Porosity of Stria Vascularis? Barany Society Meeting. Uppsala, Sweden, 2000.

63Niyazov DM, Andrews JC, Strelioff D, Sinha S, Lufkin R: Diagnosis of endolymphatic hydrops in vivo with magnetic resonance imaging. Otol Neurotol 2001;22:813–817.

64Zou J, Pyykko I, Bjelke B, Dastidar P, Toppila E: Communication between the perilymphatic scalae and spiral ligament visualized by in vivo MRI. Audiol Neurootol 2005;10:145–152.

65Nakashima T, Naganawa S, Sugiura M, Teranishi M, Sone M, Hayashi H, et al: Visualization of endolymphatic hydrops in patients with Meniere’s disease. Laryngoscope 2007;117:415–420.

66Pyykko I, Zou J, Poe D, Nakashima T, Naganawa S: Magnetic resonance imaging of the inner ear in Meniere’s disease. Otolaryngol Clin North Am 2010;43:1059–1080.

67Gurkov R, Flatz W, Louza J, Strupp M, Krause E: In vivo visualization of endolyphatic hydrops in patients with Meniere’s disease: correlation with audiovestibular function. Eur Arch Otorhinolaryngol 2011;268:1743–1748.

68Naganawa S, Yamazaki M, Kawai H, Bokura K, Iida T, Sone M, et al: MR imaging of Meniere’s disease after combined intratympanic and intravenous injection of gadolinium using HYDROPS2. Magn Reson Med Sci 2014;13:133–137.

69Nakashima T, Sone M, Teranishi M, Yoshida T, Terasaki H, Kondo M, et al: A perspective from magnetic resonance imaging findings of the inner ear: Relationships among cerebrospinal, ocular and inner ear fluids. Auris Nasus Larynx 2012;39:345–355.

70Nakashima T, Naganawa S, Pyykko I, Gibson WP, Sone M, Nakata S, et al: Grading of endolymphatic hydrops using magnetic resonance imaging. Acta Otolaryngol Suppl 2009;560:5–8.

71Pyykko I, Nakashima T, Yoshida T, Zou J, Naganawa S: Meniere’s disease: a reappraisal supported by a variable latency of symptoms and the MRI visualisation of endolymphatic hydrops. BMJ Open 2013;3:pii:e001555.

72Gurkov R, Flatz W, Louza J, Strupp M, Ertl-Wagner B, Krause E: In vivo visualized endolymphatic hydrops and inner ear functions in patients with electrocochleographically confirmed Meniere’s disease. Otol Neurotol 2012;33:1040–1045.

73Liu F, Huang W, Wang Z, Chen Q, Liu X, Li S, et al: Noninvasive evaluation of endolymphatic space in healthy volunteers using magnetic resonance imaging. Acta Otolaryngol 2011;131:247–257.

74Counter SA, Bjelke B, Borg E, Klason T, Chen Z, Duan ML: Magnetic resonance imaging of the membranous labyrinth during in vivo gadolinium (Gd-DTPA-BMA) uptake in the normal and lesioned cochlea. Neuroreport 2000;11:3979–3983.

75Zou J, Pyykko I, Counter SA, Klason T, Bretlau P, Bjelke B: In vivo observation of dynamic perilymph formation using 4.7 T MRI with gadolinium as a tracer. Acta Otolaryngol 2003;123:910–915.

76Zou J, Zhang W, Poe D, Zhang Y, Ramadan UA, Pyykko I: Differential passage of gadolinium through the mouse inner ear barriers evaluated with 4.7T MRI. Hear Res 2010;259:36–43.

77Zou J, Yoshida T, Ramadan UA, Pyykko I: Dynamic enhancement of the rat inner ear after ultra-small-volume administration of Gd-DOTA to the medial wall of the middle ear cavity. ORL J Otorhinolaryngol Relat Spec 2011;73:275–281.

78Zou J, Pyykko I: Enhanced oval window and blocked round window passages for middle-inner ear transportation of gadolinium in guinea pigs with a perforated round window membrane. Eur Arch Otorhinolaryngol 2015;272:303–309.

79Kaasinen S, Pyykko I, Ishizaki H, Aalto H: Intratympanic gentamicin in Meniere’s disease. Acta Otolaryngol 1998;118:294–298.

80Eklund S, Pyykko I, Aalto H, Ishizaki H, Vasama JP: Effect of intratympanic gentamicin on hearing and tinnitus in Meniere’s disease. Am J Otol 1999;20:350–356.

81Louza JP, Flatz W, Krause E, Gurkov R: Short-term audiologic effect of intratympanic gadolinium contrast agent application in patients with Meniere’s disease. Am J Otolaryngol 2012;33:533–537.

82Louza J, Krause E, Gurkov R: Audiologic evaluation of Meniere’s disease patients one day and one week after intratympanic application of gadolinium contrast agent: our experience in sixty-five patients. Clin Otolaryngol 2013;38:262–266.

83Louza J, Krause E, Gurkov R: Hearing function after intratympanic application of gadolinium-based contrast agent: a long-term evaluation. Laryngoscope 2015;125:2366–2370.

84Yoshioka M, Naganawa S, Sone M, Nakata S, Teranishi M, Nakashima T: Individual differences in the permeability of the round window: evaluating the movement of intratympanic gadolinium into the inner ear. Otol Neurotol 2009;30:645–648.

85Naganawa S, Yamazaki M, Kawai H, Bokura K, Sone M, Nakashima T: Imaging of Meniere’s disease after intravenous administration of single-dose gadodiamide: utility of subtraction images with different inversion time. Magn Reson Med Sci 2012;11:213–219.

86Wu Q, Dai C, Zhao M, Sha Y: The correlation between symptoms of definite Meniere’s disease and endolymphatic hydrops visualized by magnetic resonance imaging. Laryngoscope 2016;126:974–979.

87Yamazaki M, Naganawa S, Tagaya M, Kawai H, Ikeda M, Sone M, et al: Comparison of contrast effect on the cochlear perilymph after intratympanic and intravenous gadolinium injection. AJNR Am J Neuroradiol 2012;33:773–778.

88Naganawa S, Yamazaki M, Kawai H, Bokura K, Sone M, Nakashima T: Visualization of endolymphatic hydrops in Meniere’s disease with single-dose intravenous gadolinium-based contrast media using heavily T(2)-weighted 3D-FLAIR. Magn Reson Med Sci 2010;9:237–242.

89Attye A, Dumas G, Tropres I, Roustit M, Karkas A, Banciu E, et al: Recurrent peripheral vestibulopathy: is MRI useful for the diagnosis of endolymphatic hydrops in clinical practice? Eur Radiol 2015;25:3043–3049.

90Pakdaman MN, Ishiyama G, Ishiyama A, Peng KA, Kim HJ, Pope WB, et al: Blood-labyrinth barrier permeability in meniere disease and idiopathic sudden sensorineural hearing loss: findings on delayed postcontrast 3D-FLAIR MRI. AJNR Am J Neuroradiol 2016, Epub ahead of print.

91Tanigawa T, Tamaki T, Yamamuro O, Tanaka H, Nonoyama H, Shiga A, et al: Visualization of endolymphatic hydrops after administration of a standard dose of an intravenous gadolinium-based contrast agent. Acta Otolaryngol 2011;131:596–601.

92Mukaida T, Sone M, Yoshida T, Kato K, Teranishi M, Naganawa S, et al: Magnetic resonance imaging evaluation of endolymphatic hydrops in cases with otosclerosis. Otol Neurotol 2015;36:1146–1150.

93Gurkov R, Berman A, Dietrich O, Flatz W, Jerin C, Krause E, et al: MR volumetric assessment of endolymphatic hydrops. Eur Radiol 2015;25:585–595.

94Naganawa S: The technical and clinical features of 3D-FLAIR in neuroimaging. Magn Reson Med Sci 2015;14:93–106.

95Naganawa S, Ohashi T, Kanou M, Kuno K, Sone M, Ikeda M: Volume quantification of endolymph after intravenous administration of a single dose of gadolinium contrast agent: comparison of 18- versus 8-min imaging protocols. Magn Reson Med Sci 2015;14:257–262.

96Naganawa S, Kawai H, Taoka T, Sone M: Improved 3D-real inversion recovery: a robust imaging technique for endolymphatic hydrops after intravenous administration of gadolinium. Magn Reson Med Sci 2018, Epub ahead of print.

97Fiorino F, Pizzini FB, Beltramello A, Mattellini B, Barbieri F: Reliability of magnetic resonance imaging performed after intratympanic administration of gadolinium in the identification of endolymphatic hydrops in patients with Meniere’s disease. Otol Neurotol 2011;32:472–477.

98Shi H, Li Y, Yin S, Zou J: The predominant vestibular uptake of gadolinium through the oval window pathway is compromised by endolymphatic hydrops in Meniere’s disease. Otol Neurotol 2014;35:315–322.

99Fiorino F, Pizzini FB, Beltramello A, Barbieri F: Progression of endolymphatic hydrops in Meniere’s disease as evaluated by magnetic resonance imaging. Otol Neurotol 2011;32:1152–1157.

100Gurkov R, Flatz W, Ertl-Wagner B, Krause E: Endolymphatic hydrops in the horizontal semicircular canal: a morphologic correlate for canal paresis in Meniere’s disease. Laryngoscope 2013;123:503–506.

101Jerin C, Krause E, Ertl-Wagner B, Gurkov R: Longitudinal assessment of endolymphatic hydrops with contrast-enhanced magnetic resonance imaging of the labyrinth. Otol Neurotol 2014;35:880–883.

102Suga K, Kato M, Yoshida T, Nishio N, Nakada T, Sugiura S, et al: Changes in endolymphatic hydrops in patients with Meniere’s disease treated conservatively for more than 1 year. Acta Otolaryngol 2015;135:866–870.

103Maxwell R, Jerin C, Gurkov R: Utilisation of multi-frequency VEMPs improves diagnostic accuracy for Meniere’s disease. Eur Arch Otorhinolaryngol 2017;274:85–93.

104Naganawa S, Yamazaki M, Kawai H, Bokura K, Sone M, Nakashima T: Imaging of Meniere’s disease by subtraction of MR cisternography from positive perilymph image. Magn Reson Med Sci 2012;11:303–309.

105Huang CH, Young YH: Bilateral Meniere’s disease assessed by an inner ear test battery. Acta Otolaryngol 2015;135:233–238.

106Friberg U, Stahle J, Svedberg A: The natural course of Meniere’s disease. Acta Otolaryngol Suppl 1984;406:72–77.

107Thomas K, Harrison MS: Long-term follow up of 610 cases of Meniere’s disease. Proc R Soc Med 1971;64:853–857.

108House JW, Doherty JK, Fisher LM, Derebery MJ, Berliner KI: Meniere’s disease: prevalence of contralateral ear involvement. Otol Neurotol 2006;27:355–361.

109Huppert D, Strupp M, Brandt T: Long-term course of Meniere’s disease revisited. Acta Otolaryngol 2010;130:644–651.

110Gurkov R, Pyyko I, Zou J, Kentala E: What is Meniere’s disease? A contemporary re-evaluation of endolymphatic hydrops. J Neurol 2016;263(suppl 1):S71–S81.

111Gurkov R, Flatz W, Louza J, Strupp M, Ertl-Wagner B, Krause E: Herniation of the membranous labyrinth into the horizontal semicircular canal is correlated with impaired caloric response in Meniere’s disease. Otol Neurotol 2012;33:1375–1379.

112Zellhuber S, Mahringer A, Rambold HA: Relation of video-head-impulse test and caloric irrigation: a study on the recovery in unilateral vestibular neuritis. Eur Arch Otorhinolaryngol 2014;271:2375–2383.

113Mahringer A, Rambold HA: Caloric test and video-head-impulse: a study of vertigo/dizziness patients in a community hospital. Eur Arch Otorhinolaryngol 2014;271:463–472.

114Jerin C, Maxwell R, Gurkov R: High-Frequency Horizontal Semicircular Canal Function in Certain Meniere’s Disease. Ear Hear 2018, Epub ahead of print.

115Zou J, Pyykko I: Calcium metabolism profile in rat inner ear indicated by MRI after tympanic medial wall administration of manganese chloride. Ann Otol Rhinol Laryngol 2016;125:53–62.

116Zou J, Zhang Y, Yin S, Wu H, Pyykko I: Mitochondrial dysfunction disrupts trafficking of Kir4.1 in spiral ganglion satellite cells. J Neurosci Res 2009;87:141–149.

117Zou J, Zhang Y, Zhang W, Poe D, Zhai S, Yang S, et al: Mitochondria toxin-induced acute cochlear cell death indicates cellular activity-correlated energy consumption. Eur Arch Otorhinolaryngol 2013;270:2403–2415.

118Groschel M, Hubert N, Muller S, Ernst A, Basta D: Age-dependent changes of calcium related activity in the central auditory pathway. Exp Gerontol 2014;58:235–243.

119Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B, et al: In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 2006;240:756–764.

120Fillmore HL, Shultz MD, Henderson SC, Cooper P, Broaddus WC, Chen ZJ, et al: Conjugation of functionalized gadolinium metallofullerenes with IL-13 peptides for targeting and imaging glial tumors. Nanomedicine (Lond) 2011;6:449–458.

121Poe D ZJ, Zhang W, Qin J, Abo Ramadan U, Fornara A, Muhammed M, Pyykkö I: MRI of the cochlea with superparamagnetic iron oxide nanoparticles compared to gadolinium chelate contrast agents in a rat model. Europ J Nanomed 2009;2:29–36.

122Fornara A, Johansson P, Petersson K, Gustafsson S, Qin J, Olsson E, et al: Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett 2008;8:3423–3428.

123Zou J, Zhang W, Poe D, Qin J, Fornara A, Zhang Y, et al: MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine (Lond) 2010;5:739–754.

124Haviv AH, Greneche JM, Lellouche JP: Aggregation control of hydrophilic maghemite (gamma-Fe2O3) nanoparticles by surface doping using cerium atoms. J Am Chem Soc 2010;132:12519–12521.

125Zou J, Ostrovsky S, Israel LL, Feng H, Kettunen MI, Lellouche JM, et al: Efficient penetration of ceric ammonium nitrate oxidant-stabilized gamma-maghemite nanoparticles through the oval and round windows into the rat inner ear as demonstrated by MRI. J Biomed Mater Res B Appl Biomater 2017;105:1883–1891.

126Zhen M, Zheng J, Wang Y, Shu C, Gao F, Zou J, et al: Multifunctional nanoprobe for MRI/optical dual-modality imaging and radical scavenging. Chemistry 2013;19:14675–14681.

127Pyykko I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P: An overview of nanoparticle based delivery for treatment of inner ear disorders. Methods Mol Biol 2016;1427:363–415.

128Zou J, Pyykkö I, Yoshida T, Gürkov R, Shi H, Li Y, Zheng G, Peng R, Zheng H, Yin Y, Hyttinen J, Nakashima T, Naganawa S: A milestone research in Meniere’s disease by visualizing endolymphatic hydrops using gadolinium-enhanced inner ear MRI and the challenges in clinical application. Austin J Radiol 2015;2:1–7.

129Zou J, Sood R, Ranjan S, Poe D, Ramadan UA, Kinnunen PK, et al: Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium. J Nanobiotechnology 2010;8:32.

130Zou J, Sood R, Ranjan S, Poe D, Ramadan UA, Pyykko I, et al: Size-dependent passage of liposome nanocarriers with preserved posttransport integrity across the middle-inner ear barriers in rats. Otol Neurotol 2012;33:666–673.

131Zou J, Sood R, Zhang Y, Kinnunen PK, Pyykko I: Pathway and morphological transformation of liposome nanocarriers after release from a novel sustained inner-ear delivery system. Nanomedicine (Lond) 2014;9:2143–2155.

132Zou J, Peng B, Ostrovsky S, Li B, Li C, Kettunen MI, Lellouche JM, Pyykkö I: Biological effect tetra-branched anti-TNF-peptide and coating ratio-dependent penetration of the peptide-conjugated Cerium3/4+ Cation-stabilized gamma-maghemite nanoparticles into rat inner ear after transtympanic injection visualized by MRI. J Mater Sci Nanotechnol 2017, in press.

133Bellos C, Rigas G, Spiridon IF, Bibas A, Iliopoulou D, Bohnke F, et al: Reconstruction of cochlea based on micro-CT and histological images of the human inner ear. Biomed Res Int 2014;2014:485783.

134Poznyakovskiy AA, Zahnert T, Kalaidzidis Y, Schmidt R, Fischer B, Baumgart J, et al: The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data. Hear Res 2008;243:95–104.

135Poznyakovskiy AA, Mainka A, Platzek I, Murbe D: A fast semiautomatic algorithm for centerline-based vocal tract segmentation. Biomed Res Int 2015;2015:906356.

136Zou J, Hannula M, Misra S, Feng H, Labrador RH, Aula AS, et al: Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J Nanobiotechnol 2015;13:5.

137Wachsmann-Hogiu S, Weeks T, Huser T: Chemical analysis in vivo and in vitro by Raman spectroscopy – from single cells to humans. Curr Opin Biotechnol 2009;20:63–73.

138Pandey R, Paidi SK, Kang JW, Spegazzini N, Dasari RR, Valdez TA, et al: Discerning the differential molecular pathology of proliferative middle ear lesions using Raman spectroscopy. Sci Rep 2015;5:13305.

139Rodriguez LG, Lockett SJ, Holtom GR: Coherent anti-stokes Raman scattering microscopy: a biological review. Cytometry A 2006;69:779–791.

140Folick A, Min W, Wang MC: Label-free imaging of lipid dynamics using coherent anti-stokes raman scattering (CARS) and stimulated raman scattering (SRS) microscopy. Curr Opin Genet Dev 2011;21:585–590.

141Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R: Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 2011;7:137–145.

142Brustlein S, Berto P, Hostein R, Ferrand P, Billaudeau C, Marguet D, et al: Double-clad hollow core photonic crystal fiber for coherent Raman endoscope. Opt Express 2011;19:12562–12568.

143Wang Z, Gao L, Luo P, Yang Y, Hammoudi AA, Wong KK, et al: Coherent anti-stokes raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers. Opt Express 2011;19:7960–7970.

The work has been performed at the University of Tampere, Lääkärinkatu 1, 33520 Tampere.

Ilmari Pyykkö

Hearing and Balance Research Unit, University of Tampere

Itäinen Puistotie 12 A 1

FI–00140 Tampere (Finland)

E-Mail ilmari.pyykko@uta.fi

Vestibular Disorders

Подняться наверх