Читать книгу Solar-to-Chemical Conversion - Группа авторов - Страница 28
References
Оглавление1 1 (a) Oppenheimer, M. and Alley, R.B. (2005). Clim. Change 68: 257. (b) Leifeld, J. and Fuhrer, J. (2005). Environ. Sci. Policy 8: 410.
2 2 (a) Keller, F., Lee, R.P., and Meyer, B. (2020). J. Cleaner Prod. 250: 119484. (b) Kaur‐Sidhu, M., Ravindra, K., Mor, S., and John, S. (2020). Atmos. Pollut. Res. 11: 252.
3 3 (a) Bachu, S., Bonijoly, D., Bradshaw, J. et al. (2007). Int. J. Greenhouse Gas Control 1: 430. (b) Rubin, E.S., Chen, C., and Rao, A.B. (2007). Energy Policy 35: 4444. (c) Davison, J. (2007). Energy 32: 1163.
4 4 Herron, J.A., Kim, J., Upadhye, A.A. et al. (2015). Energy Environ. Sci. 8: 126.
5 5 (a) McConnell, I., Li, G., and Brudvig, G.W. (2010). Chem. Biol. 17: 434. (b) Larkum, A.W. (2010). Curr. Opin. Biotechnol. 21: 271.
6 6 van Grondelle, R. and Boeker, E. (2017). J. Phys. Chem. B 121: 7229.
7 7 (a) Dogutan, D.K. and Nocera, D.G. (2019). Acc. Chem. Res. 52: 3143. (b) Bohne, C., Pan, Q., Ceroni, P. et al. (2015). Faraday Discuss. 185: 187. (c) Barber, J. (2009). Chem. Soc. Rev. 38: 185.
8 8 Dhakshinamoorthy, A., Navalon, S., Corma, A., and Garcia, H. (2012). Energy Environ. Sci. 5: 9217.
9 9 Liu, X., Inagaki, S., and Gong, J. (2016). Angew. Chem. Int. Ed. 55: 14924.
10 10 (a) Hamdy, M.S., Amrollahi, R., Sinev, I. et al. (2014). J. Am. Chem. Soc. 136: 594. (b) Zhao, G., Huang, X., Wang, X., and Wang, X. (2017). J. Mater. Chem. A 5: 21625.
11 11 Ke, J., Liu, J., Sun, H. et al. (2017). Appl. Catal., B 200: 47.
12 12 Hou, W. and Cronin, S. (2013). Adv. Funct. Mater. 23: 1612.
13 13 (a) Ke, J., Duan, X., Luo, S.L. et al. (2017). Chem. Eng. J. 313: 1447. (b) Luo, S., Ke, J., Yuan, M. et al. (2018). Appl. Catal., B 221: 215.
14 14 (a) Watanabe, K., Menzel, D., Nilius, N., and Freund, H. (2006). Chem. Rev. 106: 4301. (b) Banerjee, S., Pillai, S., Falaras, P. et al. (2014). J. Phys. Chem. Lett. 5: 2543. (c) Tahir, M. and Amin, N. (2013). Renewable Sustainable Energy Rev. 25: 560.
15 15 Ke, J., Adnan Younis, M., Kong, Y. et al. (2018). Nano‐Micro Lett. 10: 69.
16 16 Ma, Y., Wang, X., Jia, Y. et al. (2014). Chem. Rev. 114: 9987.
17 17 (a) Zou, X., Dong, Y., Li, S. et al. (2018). Sol. Energy 169: 392. (b) Liu, J., Zhang, J., Wang, D. et al. (2019). ACS Sustainable Chem. Eng. 7: 12428. (c) Zhang, Z., Wang, S., Bao, M. et al. (2019). J. Colloid Interface Sci. 555: 342.
18 18 (a) Ke, J., Zhao, C., Zhou, H. et al. (2019). Sustainable Mater.Technol. 19: e00088. (b) Zou, X., Yuan, C., Dong, Y. et al. (2020). Chem. Eng. J. 379: 122380.
19 19 Inoue, T., Fujishima, A., Konishi, S., and Honda, K. (1979). Nature 277: 637.
20 20 Tu, W., Zhou, Y., and Zou, Z. (2014). Adv. Mater. 26: 4607.
21 21 Anpo, M., Yamashita, H., Ichihashi, Y., and Ehara, S. (1995). J. Electroanal. Chem. 396: 21.
22 22 Anpo, M., Yamashita, H., Ichihashi, Y. et al. (1997). J. Phys. Chem. B 101: 2632.
23 23 Ikeuea, K., Mukaia, H., Yamashitaa, H. et al. (2001). J. Synchrotron Radiat. 8: 640.
24 24 Anpo, M. and Chiba, K. (1992). J. Mol. Catal. 74: 207.
25 25 Maidan, R. and Willner, I. (1986). J. Am. Chem. Soc. 108: 8100.
26 26 Saladin, F., Forss, L., and Kamber, I. (1995). J. Chem. Soc., Chem. Commun. 5: 533.
27 27 Tasbihi, M., Fresno, F., Simon, U. et al. (2018). Appl. Catal., B 239: 68.
28 28 Ran, J., Jaroniec, M., and Qiao, S.Z. (2018). Adv. Mater. 30: 1704649.
29 29 Liu, Y., Zhou, S., Li, J. et al. (2015). Appl. Catal., B 168–169: 125.
30 30 Yang, X., Wang, S., Yang, N. et al. (2019). Appl. Catal., B 259: 118088.
31 31 Han, C., Lei, Y., Wang, B., and Wang, Y. (2018). ChemSusChem 11: 4237.
32 32 Aurian‐Blajeni, B., Halmann, M., and Manassen, J. (1980). Sol. Energy 25: 165.
33 33 Wu, J.C.S., Lin, H.M., and Lai, C.L. (2005). Appl. Catal., A 296: 194.
34 34 Yahaya, A.H., Gondal, M.A., and Hameed, A. (2004). Chem. Phys. Lett. 400: 206.
35 35 An, C., Wang, J., Jiang, W. et al. (2012). Nanoscale 4: 5646.
36 36 Liu, S., Lu, J., Pu, Y., and Fan, H. (2019). J. CO2 Util. 33: 171.
37 37 Liang, L., Lei, F., Gao, S. et al. (2015). Angew. Chem. Int. Ed. 54: 13971.
38 38 AlOtaibi, B., Kong, X., Vanka, S. et al. (2016). ACS Energy Lett. 1: 246.
39 39 Li, A., Wang, T., Li, C. et al. (2019). Angew. Chem. Int. Ed. 58: 3804.
40 40 Yadav, R.K., Oh, G.H., Park, N.J. et al. (2014). J. Am. Chem. Soc. 136: 16728.
41 41 Kuk, S.K., Singh, R.K., Nam, D.H. et al. (2017). Angew. Chem. Int. Ed. 56: 3827.
42 42 Mora‐Hernandez, J.M., Huerta‐Flores, A.M., and Torres‐Martínez, L.M. (2018). J. CO2 Util. 27: 179.
43 43 Ojha, N., Bajpai, A., and Kumar, S. (2019). Catal. Sci. Technol. 9: 4598.
44 44 He, Z., Jiang, L., Han, J. et al. (2014). Asian J. Chem. 26: 4759.
45 45 Garay‐Rodríguez, L.F., Torres‐Martínez, L.M., and Moctezuma, E. (2018). J. Photochem. Photobiol., A 361: 25.
46 46 (a) Khenkin, A.M., Efremenko, I., Weiner, L. et al. (2010). Chem. Eur. J. 16: 1356. (b) Chen, D., Sahasrabudhe, A., Wang, P. et al. (2013). Dalton Trans. 42: 10587.
47 47 Barman, S., Sreejith, S.S., Garai, S. et al. (2019). ChemPhotoChem 3: 93.
48 48 Brunetti, A., Pomilla, F., Marcì, G. et al. (2019). Appl. Catal., B 255: 117779.
49 49 Kumar, D., Lee, S.B., Park, C.H., and Kim, C.S. (2018). Chem. Commun. 54: 1571.
50 50 Adekoya, D.O., Tahir, M., and Amin, N.A.S. (2017). J. CO2 Util. 18: 261.
51 51 Ohno, T., Murakami, N., Koyanagi, T., and Yang, Y. (2014). J. CO2 Util. 6: 17.
52 52 Matsuoka, S., Kohzuki, T., Pac, C. et al. (1992). J. Phys. Chem. 96: 4437.
53 53 Tamaki, Y., Morimoto, T., Koike, K., and Ishitani, O. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 15673.
54 54 Tamaki, Y., Koike, K., and Ishitani, O. (2015). Chem. Sci. 6: 7213.
55 55 (a) Suzuki, T.M., Tanaka, H., Morikawa, T. et al. (2011). Chem. Commun. 47: 8673. (b) Sato, S., Morikawa, T., Saeki, S. et al. (2010). Angew. Chem. Int. Ed. 49: 5101.
56 56 Tsounis, C., Kuriki, R., Shibata, K. et al. (2018). ACS Sustainable Chem. Eng. 6: 15333.
57 57 Kim, W., Seok, T., and Choi, W. (2012). Energy Environ. Sci. 5: 6066.
58 58 Kulandaivalu, T., Abdul Rashid, S., Sabli, N., and Tan, T. (2019). Diamond Relat. Mater. 91: 64.
59 59 (a) Seeharaj, P., Kongmun, P., Paiplod, P. et al. (2019). Ultrason. Sonochem. 58: 104657. (b) Dai, W., Xu, H., Yu, J. et al. (2015). Appl. Surf. Sci. 356: 173.
60 60 Liu, Y., Huang, B., Dai, Y. et al. (2009). Catal. Commun. 11: 210.
61 61 Mao, J., Peng, T., Zhang, X. et al. (2013). Catal. Sci. Technol. 3: 1253.
62 62 Pastrana‐Martínez, L.M., Silva, A.M.T., Fonseca, N.N.C. et al. (2016). Top. Catal. 59: 1279.
63 63 Fusco, C., Casiello, M., Catucci, L. et al. (2018). Materials 11: 307.
64 64 Park, H., Ou, H.H., Colussi, A.J., and Hoffmann, M.R. (2015). J. Phys. Chem. A 119: 4658.
65 65 (a) Kim, D., Kley, C.S., Li, Y., and Yang, P. (2017). Proc. Natl. Acad. Sci. U.S.A. 114: 10560. (b) Zhong, S., Yang, X., Cao, Z. et al. (2018). Chem. Commun. 54: 11324. (c) Calvinho, K.U.D., Laursen, A.B., Yap, K.M.K. et al. (2018). Energy Environ. Sci. 11: 2550.
66 66 (a) Iguchi, S., Teramura, K., Hosokawa, S., and Tanaka, T. (2016). Appl. Catal., A 521: 160. (b) Iguchi, S., Teramura, K., Hosokawa, S., and Tanaka, T. (2016). Catal. Sci. Technol. 6: 4978.
67 67 Yin, G., Nishikawa, M., Nosaka, Y. et al. (2015). ACS Nano 9: 2111.
68 68 Tahir, M., Tahir, B., Amin, N., and Zakaria, Z.Y. (2017). J. CO2 Util. 18: 250.
69 69 (a) Zou, X., Dong, Y., Li, S. et al. (2018). J. Taiwan Inst. Chem. Eng. 93: 158. (b) Yu, L.L., Qin, J.Z., Zhao, W.J. et al. (2020). Int. J. Photoenergy 2020: 1.
70 70 Li, Y., Ren, J., Ouyang, S. et al. (2019). Appl. Catal., B 259: 118027.
71 71 Iizuka, K., Wato, T., Miseki, Y. et al. (2011). J. Am. Chem. Soc. 133: 20863.
72 72 Teramura, K., Wang, Z., Hosokawa, S. et al. (2014). Chem. Eur. J. 20: 9906.
73 73 Ulagappan, N. and Frei, H. (2000). J. Phys. Chem. A 104: 7834.
74 74 Kim, W., McClure, B.A., Edri, E., and Frei, H. (2016). Chem. Soc. Rev. 45: 3221.
75 75 (a) Wang, Y., Liu, M., Chen, W. et al. (2019). J. Alloys Compd. 786: 149. (b) Huang, C., Guo, R., Pan, W. et al. (2018). J. CO2 Util. 26: 487. (c) Ke, J., Zhou, H., Liu, J. et al. (2019). J. Colloid Interface Sci. 555: 413.
76 76 Zhou, H., Wen, Z., Liu, J. et al. (2019). Appl. Catal., B 242: 76.
77 77 Arai, T., Sato, S., Kajino, T., and Morikawa, T. (2013). Energy Environ. Sci. 6: 1274.
78 78 (a) Bazzan, I., Volpe, A., Dolbecq, A. et al. (2017). Catal. Today 290: 39. (b) Song, F., More, R., Schilling, M. et al. (2017). J. Am. Chem. Soc. 139: 14198.
79 79 Helveg, S., Kisielowski, C.F., Jinschek, J.R. et al. (2015). Micron 68: 176.
80 80 Zhao, Y., Swierk, J.R., Megiatto, J.D. Jr., et al. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 15612.
81 81 Kim, W., Yuan, G., McClure, B.A., and Frei, H. (2014). J. Am. Chem. Soc. 136: 11034.
82 82 Fan, J., Cheng, L., Liu, Y. et al. (2019). J. Catal. 378: 164.
83 83 Yu, L., Ba, X., Qiu, M. et al. (2019). Nano Energy 60: 576.
84 84 (a) Zhang, Y., Wu, C., Jiang, H. et al. (2018). Adv. Mater. 30: 1707522. (b) Shrestha, S. and Dutta, P.K. (2018). ACS Omega 3: 11972.
85 85 Zhang, H., Guo, C., Ren, J. et al. (2019). Chem. Commun. 55: 14050.
86 86 Zhang, L., Yang, C., Xie, Z., and Wang, X. (2018). Appl. Catal., B 224: 886.
87 87 Paille, G., Gomez‐Mingot, M., Roch‐Marchal, C. et al. (2018). J. Am. Chem. Soc. 140: 3613.
88 88 Shah, W., Waseem, A., Nadeem, M.A., and Kögerler, P. (2018). Appl. Catal., A 567: 132.