Читать книгу Solar-to-Chemical Conversion - Группа авторов - Страница 38
References
Оглавление1 1 Faunce, T.A., Lubitz, W., Rutherford, A.W. et al. (2013). Energy Environ. Sci. 6: 695–698.
2 2 Armaroli, N. and Balzani, V. (2016). Chem. Eur. J. 22: 32–57.
3 3 Lane, N. (2016). Oxygen: The Molecule that Made the World, 400. Oxford: Oxford University Press.
4 4 Blankenship, R.E. (2014). Molecular Mechanisms of Photosynthesis, 2e, 312. Chichester: Wiley.
5 5 Shevela, D. and Björn, L.O. (2017). Govindjee, Photosynthesis: Solar Energy for Life, 204. Singapore: World Scientific.
6 6 Krewald, V., Retegan, M., and Pantazis, D.A. (2016). Top. Curr. Chem. 371: 23–48.
7 7 Pantazis, D.A. (2018). ACS Catal. 8: 9477–9507.
8 8 Junge, W. (2019). Q. Rev. Biophys. 52: e1.
9 9 Wydrzynski, T.J. and Hillier, W. (2012). Molecular Solar Fuels, 553. Cambridge: The Royal Society of Chemistry.
10 10 Collings, A.F. and Critchley, C. (2005). Artificial Photosynthesis: From Basic Biology to Industrial Application, 313. Weinheim: Wiley‐VCH.
11 11 Cogdell, R.J., Gardiner, A.T., Yukihira, N., and Hashimoto, H. (2018). J. Photochem. Photobiol., A 353: 645–653.
12 12 El‐Khouly, M.E., El‐Mohsnawy, E., and Fukuzumi, S. (2017). J. Photochem. Photobiol., C 31: 36–83.
13 13 Nocera, D.G. (2017). Acc. Chem. Res. 50: 616–619.
14 14 Cox, N., Pantazis, D.A., Neese, F., and Lubitz, W. (2015). Interface Focus 5: 20150009.
15 15 Kim, D., Sakimoto, K.K., Hong, D., and Yang, P. (2015). Angew. Chem. Int. Ed. 54: 3259–3266.
16 16 Barber, J. and Tran, P.D. (2013). J. R. Soc. Interface 10: 20120984.
17 17 Tachibana, Y., Vayssieres, L., and Durrant, J.R. (2012). Nat. Photonics 6: 511–518.
18 18 Lubitz, W., Reijerse, E.J., and Messinger, J. (2008). Energy Environ. Sci. 1: 15–31.
19 19 Rappaport, F. and Diner, B.A. (2008). Coord. Chem. Rev. 252: 259–272.
20 20 Brotosudarmo, T.H.P., Prihastyanti, M.N.U., Gardiner, A.T. et al. (2014). Energy Procedia 47: 283–289.
21 21 Chen, M., Schliep, M., Willows, R.D. et al. (2010). Science 329: 1318.
22 22 Nürnberg, D.J., Morton, J., Santabarbara, S. et al. (2018). Science 360: 1210.
23 23 Green, B. and Parson, W.W. (2003). Light‐Harvesting Antennas in Photosynthesis, 516. Dordrecht: Springer.
24 24 Prince, S.M., Papiz, M.Z., Freer, A.A. et al. (1997). J. Mol. Biol. 268: 412–423.
25 25 David, L., Marx, A., and Adir, N. (2011). J. Mol. Biol. 405: 201–213.
26 26 Standfuss, J., Terwisscha van Scheltinga, A.C., Lamborghini, M., and Kühlbrandt, W. (2005). EMBO J. 24: 919–928.
27 27 Förster, T. (1948). Ann. Phys. 437: 55–75.
28 28 Redfield, A.G. (1965). Advances in Magnetic and Optical Resonance, vol. 1 (ed. J.S. Waugh), 1–32. Academic Press.
29 29 Panitchayangkoon, G., Hayes, D., Fransted, K.A. et al. (2010). Proc. Natl. Acad. Sci. U.S.A. 107: 12766.
30 30 Ishizaki, A. and Fleming, G.R. (2012). Annu. Rev. Condens. Matter Phys. 3: 333–361.
31 31 Fassioli, F., Dinshaw, R., Arpin, P.C., and Scholes, G.D. (2014). J. R. Soc. Interface 11: 20130901.
32 32 Straight, S.D., Kodis, G., Terazono, Y. et al. (2008). Nat. Nanotechnol. 3: 280–283.
33 33 Harriman, A. (2015). Chem. Commun. 51: 11745–11756.
34 34 Balzani, V., Credi, A., and Venturi, M. (2008). ChemSusChem 1: 26–58.
35 35 Newkome, G.R., Moorefield, C.N., and Vögtle, F. (2001). Dendrimers and Dendrons, 635. Weinheim: Wiley‐VCH.
36 36 Balzani, V., Ceroni, P., Maestri, M., and Vicinelli, V. (2003). Curr. Opin. Chem. Biol. 7: 657–665.
37 37 Balzani, V., Campagna, S., Denti, G. et al. (1998). Acc. Chem. Res. 31: 26–34.
38 38 McCusker, J.K. (2019). Science 363: 484.
39 39 Gust, D., Moore, T.A., and Moore, A.L. (2001). Acc. Chem. Res. 34: 40–48.
40 40 Holten, D., Bocian, D.F., and Lindsey, J.S. (2002). Acc. Chem. Res. 35: 57–69.
41 41 Choi, M.‐S., Yamazaki, T., Yamazaki, I., and Aida, T. (2004). Angew. Chem. Int. Ed. 43: 150–158.
42 42 Adronov, A., Gilat, S.L., Fréchet, J.M.J. et al. (2000). J. Am. Chem. Soc. 122: 1175–1185.
43 43 Ching Mak, C., Pomeranc, D., Sanders, J.K.M. et al. (1999). Chem. Commun.: 1083–1084.
44 44 Cotlet, M., Vosch, T., Habuchi, S. et al. (2005). J. Am. Chem. Soc. 127: 9760–9768.
45 45 Balzani, V., Bergamini, G., Ceroni, P., and Vögtle, F. (2007). Coord. Chem. Rev. 251: 525–535.
46 46 Hahn, U., Gorka, M., Vögtle, F. et al. (2002). Angew. Chem. Int. Ed. 41: 3595–3598.
47 47 Zouni, A., Witt, H.T., Kern, J. et al. (2001). Nature 409: 739–743.
48 48 Neutze, R., Wouts, R., van der Spoel, D. et al. (2000). Nature 406: 752–757.
49 49 Chapman, H.N., Fromme, P., Barty, A. et al. (2011). Nature 470: 73–77.
50 50 Kamiya, N. and Shen, J.‐R. (2003). Proc. Natl. Acad. Sci. U.S.A. 100: 98–103.
51 51 Ferreira, K.N., Iverson, T.M., Maghlaoui, K. et al. (2004). Science 303: 1831–1838.
52 52 Biesiadka, J., Loll, B., Kern, J. et al. (2004). Phys. Chem. Chem. Phys. 6: 4733–4736.
53 53 Loll, B., Kern, J., Saenger, W. et al. (2005). Nature 438: 1040–1044.
54 54 Guskov, A., Kern, J., Gabdulkhakov, A. et al. (2009). Nat. Struct. Mol. Biol. 16: 334–342.
55 55 Umena, Y., Kawakami, K., Shen, J.‐R., and Kamiya, N. (2011). Nature 473: 55–60.
56 56 Tanaka, A., Fukushima, Y., and Kamiya, N. (2017). J. Am. Chem. Soc. 139: 1718–1721.
57 57 Suga, M., Akita, F., Hirata, K. et al. (2015). Nature 517: 99–103.
58 58 Suga, M., Akita, F., Sugahara, M. et al. (2017). Nature 543: 131–135.
59 59 Kern, J., Alonso‐Mori, R., Hellmich, J. et al. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 9721–9726.
60 60 Kupitz, C., Basu, S., Grotjohann, I. et al. (2014). Nature 513: 261–265.
61 61 Young, I.D., Ibrahim, M., Chatterjee, R. et al. (2016). Nature 540: 453–457.
62 62 Kern, J., Tran, R., Alonso‐Mori, R. et al. (2014). Nat. Commun. 5: 4371.
63 63 Kern, J., Chatterjee, R., Young, I.D. et al. (2018). Nature 563: 421–425.
64 64 Wei, X., Su, X., Cao, P. et al. (2016). Nature 534: 69–74.
65 65 Su, X., Ma, J., Wei, X. et al. (2017). Science 357: 815.
66 66 Becker, K., Cormann, K.U., and Nowaczyk, M.M. (2011). J. Photochem. Photobiol., B 104: 204–211.
67 67 Shi, L.‐X., Hall, M., Funk, C., and Schröder, W.P. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 13–25.
68 68 Fagerlund, R.D. and Eaton‐Rye, J.J. (2011). J. Photochem. Photobiol., B 104: 191–203.
69 69 Bricker, T.M., Roose, J.L., Fagerlund, R.D. et al. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 121–142.
70 70 Pagliano, C., Saracco, G., and Barber, J. (2013). Photosynth. Res. 116: 167–188.
71 71 Rutherford, A.W., Osyczka, A., and Rappaport, F. (2012). FEBS Lett. 586: 603–616.
72 72 Mokvist, F., Sjöholm, J., Mamedov, F., and Styring, S. (2014). Biochemistry 53: 4228–4238.
73 73 Cardona, T., Sedoud, A., Cox, N., and Rutherford, A.W. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 26–43.
74 74 Diner, B.A. and Rappaport, F. (2002). Annu. Rev. Plant Biol. 53: 551–580.
75 75 Saito, K., Ishida, T., Sugiura, M. et al. (2011). J. Am. Chem. Soc. 133: 14379–14388.
76 76 Narzi, D., Bovi, D., De Gaetano, P., and Guidoni, L. (2015). J. Am. Chem. Soc. 138: 257–264.
77 77 Suomivuori, C.‐M., Winter, N.O.C., Hättig, C. et al. (2016). Theory Comput. 12: 2644–2651.
78 78 Brinkert, K., De Causmaecker, S., Krieger‐Liszkay, A. et al. (2016). Proc. Natl. Acad. Sci. U.S.A. 113: 12144–12149.
79 79 Müh, F., Glöckner, C., Hellmich, J., and Zouni, A. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 44–65.
80 80 Müh, F. and Zouni, A. (2013). Photosynth. Res. 116: 295–314.
81 81 Fletcher, S. (2015). J. Solid State Electrochem. 19: 241–250.
82 82 Saito, K., Shen, J.‐R., Ishida, T., and Ishikita, H. (2011). Biochemistry 50: 9836–9844.
83 83 Kuroda, H., Kodama, N., Sun, X.‐Y. et al. (2014). Plant Cell Physiol. 55: 1266–1275.
84 84 Kawashima, K., Saito, K., and Ishikita, H. (2018). Biochemistry 57: 4997–5004.
85 85 Chrysina, M., de Mendonça Silva, J.C., Zahariou, G. et al. (2019). J. Phys. Chem. B 123: 3068–3078.
86 86 Chrysina, M., Zahariou, G., Sanakis, Y. et al. (2011). J. Photochem. Photobiol., B 104: 72–79.
87 87 Vermaas, W.F.J., Renger, G., and Dohnt, G. (1984). Biochim. Biophys. Acta, Bioenerg. 764: 194–202.
88 88 Messinger, J. and Renger, G. (1993). Biochemistry 32: 9379–9386.
89 89 Faller, P., Debus, R.J., Brettel, K. et al. (2001). Proc. Natl. Acad. Sci. U.S.A. 98: 14368–14373.
90 90 Rutherford, A.W., Boussac, A., and Faller, P. (2004). Biochim. Biophys. Acta, Bioenerg. 1655: 222–230.
91 91 Diner, B.A., Bautista, J.A., Nixon, P.J. et al. (2004). Phys. Chem. Chem. Phys. 6: 4844–4850.
92 92 Jeans, C., Schilstra, M.J., Ray, N. et al. (2002). Biochemistry 41: 15754–15761.
93 93 Boussac, A. and Etienne, A.L. (1982). Biochem. Biophys. Res. Commun. 109: 1200–1205.
94 94 Styring, S., Sjöholm, J., and Mamedov, F. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 76–87.
95 95 Sjöholm, J., Mamedov, F., and Styring, S. (2014). Biochemistry 53: 5721–5723.
96 96 Ahmadova, N., Ho, F.M., Styring, S., and Mamedov, F. (2017). Biochim. Biophys. Acta, Bioenerg. 1858: 407–417.
97 97 Saito, K., Rutherford, A.W., and Ishikita, H. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 7690–7695.
98 98 Sirohiwal, A., Neese, F., and Pantazis, D.A. (2019). J. Am. Chem. Soc. 141: 3217–3231.
99 99 Romero, E., Novoderezhkin, V.I., and van Grondelle, R. (2017). Nature 543: 355–365.
100 100 Krieger‐Liszkay, A., Fufezan, C., and Trebst, A. (2008). Photosynth. Res. 98: 551–564.
101 101 van Wijk, K.J., Nilsson, L.O., and Styring, S. (1994). J. Biol. Chem. 269: 28382–28392.
102 102 Nixon, P.J., Michoux, F., Yu, J. et al. (2010). Ann. Bot. 106: 1–16.
103 103 Jarvi, S., Suorsa, M., and Aro, E.M. (2015). Biochim. Biophys. Acta 1847: 900–909.
104 104 Meyer, T.J. (1989). Acc. Chem. Res. 22: 163–170.
105 105 Wasielewski, M.R. (1992). Chem. Rev. 92: 435–461.
106 106 Wasielewski, M.R. (2009). Acc. Chem. Res. 42: 1910–1921.
107 107 Redmore, N.P., Rubtsov, I.V., and Therien, M.J. (2003). J. Am. Chem. Soc. 125: 8769–8778.
108 108 Hammarström, L. and Styring, S. (2011). Energy Environ. Sci. 4: 2379–2388.
109 109 Kodis, G., Liddell, P.A., Moore, A.L. et al. (2004). J. Phys. Org. Chem. 17: 724–734.
110 110 Liddell, P.A., Kuciauskas, D., Sumida, J.P. et al. (1997). J. Am. Chem. Soc. 119: 1400–1405.
111 111 Gust, D., Moore, T.A., and Moore, A.L. (2009). Acc. Chem. Res. 42: 1890–1898.
112 112 Gust, D., Moore, T.A., and Moore, A.L. (2012). Faraday Discuss. 155: 9–26.
113 113 Sun, L.C., Hammarström, L., Åkermark, B., and Styring, S. (2001). Chem. Soc. Rev. 30: 36–49.
114 114 Karlsson, E.A., Lee, B.‐L., Åkermark, T. et al. (2011). Angew. Chem. Int. Ed. 50: 11715–11718.
115 115 Kärkäs, M.D., Johnston, E.V., Verho, O., and Åkermark, B. (2014). Acc. Chem. Res. 47: 100–111.
116 116 Hammarström, L. (2015). Acc. Chem. Res. 48: 840–850.
117 117 Dasgupta, J., Ananyev, G.M., and Dismukes, G.C. (2008). Coord. Chem. Rev. 252: 347–360.
118 118 Petrouleas, V., Koulougliotis, D., and Ioannidis, N. (2005). Biochemistry 44: 6723–6728.
119 119 Havelius, K.G.V., Sjöholm, J., Ho, F. et al. (2010). Appl. Magn. Reson. 37: 151–176.
120 120 Ioannidis, N., Zahariou, G., and Petrouleas, V. (2006). Biochemistry 45: 6252–6259.
121 121 Zahariou, G., Chrysina, M., Petrouleas, V., and Ioannidis, N. (2014). FEBS Lett. 588: 1827–1831.
122 122 Zahariou, G. and Ioannidis, N. (2016). Photosynth. Res. 130: 417–426.
123 123 Havelius, K.G.V., Su, J.‐H., Han, G. et al. (2011). Biochim. Biophys. Acta, Bioenerg. 1807: 11–21.
124 124 Cox, N., Ho, F.M., Pewnim, N. et al. (2009). Biochim. Biophys. Acta, Bioenerg. 1787: 882–889.
125 125 Peloquin, J.M., Campbell, K.A., and Britt, R.D. (1998). J. Am. Chem. Soc. 120: 6840–6841.
126 126 Dau, H. and Haumann, M. (2007). Biochim. Biophys. Acta, Bioenerg. 1767: 472–483.
127 127 Klauss, A., Haumann, M., and Dau, H. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 16035–16040.
128 128 Klauss, A., Haumann, M., and Dau, H. (2015). J. Phys. Chem. B 119: 2677–2689.
129 129 Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28: 1153–1172.
130 130 Yachandra, V.K., Sauer, K., and Klein, M.P. (1996). Chem. Rev. 96: 2927–2950.
131 131 Dismukes, G.C. and Siderer, Y. (1981). Proc. Natl. Acad. Sci. U.S.A. 78: 274–278.
132 132 Yachandra, V.K., DeRose, V.J., Latimer, M.J. et al. (1993). Science 260: 675–679.
133 133 Sauer, K., Yano, J., and Yachandra, V.K. (2005). Photosynth. Res. 85: 73–86.
134 134 Yano, J., Kern, J., Sauer, K. et al. (2006). Science 314: 821–825.
135 135 Yano, J., Kern, J., Pushkar, Y. et al. (2008). Philos. Trans. R. Soc. B 363: 1139–1147.
136 136 Dau, H., Liebisch, P., and Haumann, M. (2004). Phys. Chem. Chem. Phys. 6: 4781–4792.
137 137 Haumann, M., Müller, C., Liebisch, P. et al. (2005). Biochemistry 44: 1894–1908.
138 138 Dau, H., Grundmeier, A., Loja, P., and Haumann, M. (2008). Philos. Trans. R. Soc. B 363: 1237–1243.
139 139 Glöckner, C., Kern, J., Broser, M. et al. (2013). J. Biol. Chem. 288: 22607–22620.
140 140 Grundmeier, A. and Dau, H. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 88–105.
141 141 Yano, J. and Yachandra, V. (2014). Chem. Rev. 114: 4175–4205.
142 142 Grabolle, M., Haumann, M., Müller, C. et al. (2006). J. Biol. Chem. 281: 4580–4588.
143 143 Yano, J., Kern, J., Irrgang, K.‐D. et al. (2005). Proc. Natl. Acad. Sci. U.S.A. 102: 12047–12052.
144 144 Galstyan, A., Robertazzi, A., and Knapp, E.W. (2012). J. Am. Chem. Soc. 134: 7442–7449.
145 145 Luber, S., Rivalta, I., Umena, Y. et al. (2011). Biochemistry 50: 6308–6311.
146 146 Ames, W., Pantazis, D.A., Krewald, V. et al. (2011). J. Am. Chem. Soc. 133: 19743–19757.
147 147 Amin, M., Badawi, A., and Obayya, S.S. (2016). Sci. Rep. 6: 36492.
148 148 Amin, M., Askerka, M., Batista, V.S. et al. (2017). J. Phys. Chem. B 121: 9382–9388.
149 149 Shoji, M., Isobe, H., Yamanaka, S. et al. (2015). Chem. Phys. Lett. 623: 1–7.
150 150 Krewald, V., Retegan, M., Cox, N. et al. (2015). Chem. Sci. 6: 1676–1695.
151 151 Askerka, M., Vinyard, D.J., Wang, J. et al. (2015). Biochemistry 54: 1713–1716.
152 152 Rivalta, I., Amin, M., Luber, S. et al. (2011). Biochemistry 50: 6312–6315.
153 153 Vogt, L., Vinyard, D.J., Khan, S., and Brudvig, G.W. (2015). Curr. Opin. Chem. Biol. 25: 152–158.
154 154 Amin, M., Pokhrel, R., Brudvig, G.W. et al. (2016). J. Phys. Chem. B 120: 4243–4248.
155 155 Ghosh, I., Khan, S., Banerjee, G. et al. (2019). J. Phys. Chem. B.
156 156 Nakamura, S. and Noguchi, T. (2017). J. Am. Chem. Soc. 139: 9364–9375.
157 157 Lohmiller, T., Krewald, V., Pérez Navarro, M. et al. (2014). Phys. Chem. Chem. Phys. 16: 11877–11892.
158 158 Bondar, A.‐N. and Dau, H. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 1177–1190.
159 159 Gabdulkhakov, A., Guskov, A., Broser, M. et al. (2009). Structure 17: 1223–1234.
160 160 Linke, K. and Ho, F.M. (2014). Biochim. Biophys. Acta, Bioenerg. 1837: 14–32.
161 161 Ho, F.M. (2012). Molecular Solar Fuels (eds. T.J. Wydrzynski and W. Hillier), 208–248. Cambridge: The Royal Society of Chemistry.
162 162 Ho, F.M. and Styring, S. (2008). Biochim. Biophys. Acta, Bioenerg. 1777: 140–153.
163 163 Murray, J. and Barber, J. (2008). Photosynthesis. Energy from the Sun (eds. J. Allen, E. Gantt, J. Golbeck and B. Osmond), 467–470. Springer Netherlands.
164 164 Vassiliev, S., Zaraiskaya, T., and Bruce, D. (2013). Biochim. Biophys. Acta, Bioenerg. 1827: 1148–1155.
165 165 Vassiliev, S., Comte, P., Mahboob, A., and Bruce, D. (2010). Biochemistry 49: 1873–1881.
166 166 Vassiliev, S., Zaraiskaya, T., and Bruce, D. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 1671–1678.
167 167 Debus, R.J. (2015). Biochim. Biophys. Acta, Bioenerg. 1847: 19–34.
168 168 Noguchi, T. (2015). Biochim. Biophys. Acta, Bioenerg. 1847: 35–45.
169 169 Retegan, M. and Pantazis, D.A. (2016). Chem. Sci. 7: 6463–6476.
170 170 Retegan, M. and Pantazis, D.A. (2017). J. Am. Chem. Soc. 139: 14340–14343.
171 171 Sakashita, N., Watanabe, H.C., Ikeda, T., and Ishikita, H. (2017). Photosynth. Res. 133: 75–85.
172 172 Sakashita, N., Watanabe, H.C., Ikeda, T. et al. (2017). Biochemistry 56: 3049–3057.
173 173 Kaur, D., Cai, X., Khaniya, U. et al. (2019). Inorganics: 7.
174 174 Haddy, A. (2007). Photosynth. Res. 92: 357–368.
175 175 Britt, R.D., Campbell, K.A., Peloquin, J.M. et al. (2004). Biochim. Biophys. Acta 1655: 158–171.
176 176 Peloquin, J.M., Campbell, K.A., Randall, D.W. et al. (2000). J. Am. Chem. Soc. 122: 10926–10942.
177 177 Lohmiller, T., Ames, W., Lubitz, W. et al. (2013). Appl. Magn. Reson. 44: 691–720.
178 178 Cox, N., Nalepa, A., Pandelia, M.‐E. et al. (2015). Methods in Enzymology, vol. 563 (eds. Z.Q. Peter and W. Kurt), 211–249. Academic Press.
179 179 Krewald, V., Retegan, M., Neese, F. et al. (2016). Inorg. Chem. 55: 488–501.
180 180 Möbius, K., Lubitz, W., Cox, N., and Savitsky, A. (2018). Magnetochemistry 4: 50.
181 181 Dau, H. and Haumann, M. (2008). Coord. Chem. Rev. 252: 273–295.
182 182 Zaharieva, I., Chernev, P., Berggren, G. et al. (2016). Biochemistry 55: 4197–4211.
183 183 Schuth, N., Zaharieva, I., Chernev, P. et al. (2018). Inorg. Chem. 57: 10424–10430.
184 184 Pantazis, D.A., Orio, M., Petrenko, T. et al. (2009). Chem. Eur. J. 15: 5108–5123.
185 185 Pantazis, D.A., Orio, M., Petrenko, T. et al. (2009). Phys. Chem. Chem. Phys. 11: 6788–6798.
186 186 Schinzel, S. and Kaupp, M. (2009). Can. J. Chem. 87: 1521–1539.
187 187 Neese, F., Ames, W., Christian, G. et al. (2010). Adv. Inorg. Chem. 62: 301–349.
188 188 Pantazis, D.A., Ames, W., Cox, N. et al. (2012). Angew. Chem. Int. Ed. 51: 9935–9940.
189 189 Retegan, M., Cox, N., Pantazis, D.A., and Neese, F. (2014). Inorg. Chem. 53: 11785–11793.
190 190 Beckwith, M.A., Ames, W., Vila, F.D. et al. (2015). J. Am. Chem. Soc. 137: 12815–12834.
191 191 Retegan, M., Krewald, V., Mamedov, F. et al. (2016). Chem. Sci. 7: 72–84.
192 192 Orio, M., Pantazis, D.A., and Neese, F. (2009). Photosynth. Res. 102: 443–453.
193 193 Schinzel, S., Schraut, J., Arbuznikov, A.V. et al. (2010). Chem. Eur. J. 16: 10424–10438.
194 194 Schraut, J., Arbuznikov, A.V., Schinzel, S., and Kaupp, M. (2011). ChemPhysChem 12: 3170–3179.
195 195 Orio, M., Pantazis, D.A., Petrenko, T., and Neese, F. (2009). Inorg. Chem. 48: 7251–7260.
196 196 Pantazis, D.A., Krewald, V., Orio, M., and Neese, F. (2010). Dalton Trans. 39: 4959–4967.
197 197 Baffert, C., Orio, M., Pantazis, D.A. et al. (2009). Inorg. Chem. 48: 10281–10288.
198 198 Krewald, V., Neese, F., and Pantazis, D.A. (2013). J. Am. Chem. Soc. 135: 5726–5739.
199 199 Krewald, V., Neese, F., and Pantazis, D.A. (2015). Isr. J. Chem. 55: 1219–1232.
200 200 Jaszewski, A.R., Petrie, S., Pace, R.J., and Stranger, R. (2011). Chem. Eur. J. 17: 5699–5713.
201 201 Pace, R.J., Jin, L., and Stranger, R. (2012). Dalton Trans. 41: 11145–11160.
202 202 Chen, H., Case, D.A., and Dismukes, G.C. (2018). J. Phys. Chem. B.
203 203 Chen, H., Dismukes, G.C., and Case, D.A. (2018). J. Phys. Chem. B 122: 8654–8664.
204 204 Terrett, R., Petrie, S., Stranger, R., and Pace, R.J. (2016). J. Inorg. Biochem. 162: 178–189.
205 205 Petrie, S., Stranger, R., and Pace, R.J. (2018). ChemPhysChem 19: 3296–3309.
206 206 Åhrling, K.A., Peterson, S., and Styring, S. (1997). Biochemistry 36: 13148–13152.
207 207 Messinger, J., Nugent, J.H.A., and Evans, M.C.W. (1997). Biochemistry 36: 11055–11060.
208 208 Messinger, J., Robblee, J.H., Yu, W.O. et al. (1997). J. Am. Chem. Soc. 119: 11349–11350.
209 209 Åhrling, K.A., Peterson, S., and Styring, S. (1998). Biochemistry 37: 8115–8120.
210 210 Boussac, A., Kuhl, H., Ghibaudi, E. et al. (1999). Biochemistry 38: 11942–11948.
211 211 Deák, Z., Peterson, S., Geijer, P. et al. (1999). Biochim. Biophys. Acta, Bioenerg. 1412: 240–249.
212 212 Koulougliotis, D., Hirsh, D.J., and Brudvig, G.W. (1992). J. Am. Chem. Soc. 114: 8322–8323.
213 213 Dexheimer, S.L. and Klein, M.P. (1992). J. Am. Chem. Soc. 114: 2821–2826.
214 214 Yamauchi, T., Mino, H., Matsukawa, T. et al. (1997). Biochemistry 36: 7520–7526.
215 215 Campbell, K.A., Peloquin, J.M., Pham, D.P. et al. (1998). J. Am. Chem. Soc. 120: 447–448.
216 216 Campbell, K.A., Gregor, W., Pham, D.P. et al. (1998). Biochemistry 37: 5039–5045.
217 217 Matsukawa, T., Kawamori, A., and Mino, H. (1999). Spectrochim. Acta, Part A 55: 895–901.
218 218 Casey, J.L. and Sauer, K. (1984). Biochim. Biophys. Acta, Bioenerg. 767: 21–28.
219 219 De Paula, J.C. and Brudvig, G.W. (1985). J. Am. Chem. Soc. 107: 2643–2648.
220 220 Zimmermann, J.L. and Rutherford, A.W. (1984). Biochim. Biophys. Acta, Bioenerg. 767: 160–167.
221 221 Zimmermann, J.L. and Rutherford, A.W. (1986). Biochemistry 25: 4609–4615.
222 222 Cole, J., Yachandra, V.K., Guiles, R.D. et al. (1987). Biochim. Biophys. Acta, Bioenerg. 890: 395–398.
223 223 Kim, D.H., Britt, R.D., Klein, M.P., and Sauer, K. (1990). J. Am. Chem. Soc. 112: 9389–9391.
224 224 Horner, O., Rivière, E., Blondin, G. et al. (1998). J. Am. Chem. Soc. 120: 7924–7928.
225 225 Boussac, A. and Rutherford, A.W. (2000). Biochim. Biophys. Acta, Bioenerg. 1457: 145–156.
226 226 Sanakis, Y., Sarrou, J., Zahariou, G., and Petrouleas, V. (2008). Photosynthesis: Energy from the Sun (eds. J.F. Allen, E. Gantt, J.H. Golbeck and B. Osmond), 479–482. Dordrecht: Springer.
227 227 Boussac, A., Sugiura, M., Rutherford, A.W., and Dorlet, P. (2009). J. Am. Chem. Soc. 131: 5050–5051.
228 228 Cox, N., Retegan, M., Neese, F. et al. (2014). Science 345: 804–808.
229 229 Peloquin, J.M. and Britt, R.D. (2001). Biochim. Biophys. Acta, Bioenerg. 1503: 96–111.
230 230 Kulik, L.V., Epel, B., Lubitz, W., and Messinger, J. (2007). J. Am. Chem. Soc. 129: 13421–13435.
231 231 Charlot, M.‐F., Boussac, A., and Blondin, G. (2005). Biochim. Biophys. Acta, Bioenerg. 1708: 120–132.
232 232 Kulik, L.V., Epel, B., Lubitz, W., and Messinger, J. (2005). J. Am. Chem. Soc. 127: 2392–2393.
233 233 Iuzzolino, L., Dittmer, J., Dörner, W. et al. (1998). Biochemistry 37: 17112–17119.
234 234 Dau, H., Iuzzolino, L., and Dittmer, J. (2001). Biochim. Biophys. Acta, Bioenerg. 1503: 24–39.
235 235 Dau, H., Liebisch, P., and Haumann, M. (2005). Phys. Scr. 2005: 844.
236 236 Cheah, M.H., Zhang, M., Shevela, D. et al. (2020). Proc. Natl. Acad. Sci. U.S.A. 117: 141–145.
237 237 Paul, S., Cox, N., and Pantazis, D.A. (2017). Inorg. Chem. 56: 3875–3888.
238 238 Nakamura, S. and Noguchi, T. (2016). Proc. Natl. Acad. Sci. U.S.A. 113: 12727–12732.
239 239 Kusunoki, M. (2011). Photochem. Photobiol. B 104: 100–110.
240 240 Shoji, M., Isobe, H., Tanaka, A. et al. (2018). ChemPhotoChem 2: 257–270.
241 241 Narzi, D., Mattioli, G., Bovi, D., and Guidoni, L. (2017). Chem. Eur. J. 23: 6969–6973.
242 242 Boussac, A., Rutherford, A.W., and Sugiura, M. (2015). Biochim. Biophys. Acta, Bioenerg. 1847: 576–586.
243 243 Nugent, J.H.A., Muhiuddin, I.P., and Evans, M.C.W. (2002). Biochemistry 41: 4117–4126.
244 244 Koulougliotis, D., Shen, J.‐R., Ioannidis, N., and Petrouleas, V. (2003). Biochemistry 42: 3045–3053.
245 245 Koulougliotis, D., Teutloff, C., Sanakis, Y. et al. (2004). Phys. Chem. Chem. Phys. 6: 4859–4863.
246 246 Sioros, G., Koulougliotis, D., Karapanagos, G., and Petrouleas, V. (2007). Biochemistry 46: 210–217.
247 247 Pal, R., Negre, C.F.A., Vogt, L. et al. (2013). Biochemistry 52: 7703–7706.
248 248 Lohmiller, T., Krewald, V., Sedoud, A. et al. (2017). J. Am. Chem. Soc. 139: 14412–14424.
249 249 Saito, K., William Rutherford, A., and Ishikita, H. (2015). Nat. Commun. 6: 8488.
250 250 Bovi, D., Narzi, D., and Guidoni, L. (2013). Angew. Chem. Int. Ed. 52: 11744–11749.
251 251 Isobe, H., Shoji, M., Yamanaka, S. et al. (2012). Dalton Trans. 41: 13727–13740.
252 252 Vinyard, D.J., Khan, S., Askerka, M. et al. (2017). J. Phys. Chem. B 121: 1020–1025.
253 253 Corry, T.A. and O'Malley, P.J. (2019). J. Phys. Chem. Lett. 10: 5226–5230.
254 254 Pushkar, Y., Ravari, A.K., Jensen, S.C., and Palenik, M. (2019). J. Phys. Chem. Lett. 10: 5284–5291.
255 255 Pantazis, D.A. (2019). Inorganics 7: 55.
256 256 Narzi, D., Bovi, D., and Guidoni, L. (2014). Proc. Natl. Acad. Sci. U.S.A. 111: 8723–8728.
257 257 Retegan, M., Cox, N., Lubitz, W. et al. (2014). Phys. Chem. Chem. Phys. 16: 11901–11910.
258 258 Ishikita, H., Saenger, W., Loll, B. et al. (2006). Biochemistry 45: 2063–2071.
259 259 Debus, R.J. (2014). Biochemistry 53: 2941–2955.
260 260 Dilbeck, P.L., Hwang, H.J., Zaharieva, I. et al. (2012). Biochemistry 51: 1079–1091.
261 261 Gupta, R., Taguchi, T., Lassalle‐Kaiser, B. et al. (2015). Proc. Natl. Acad. Sci. U.S.A. 112: 5319–5324.
262 262 Boussac, A., Sugiura, M., Kirilovsky, D., and Rutherford, A.W. (2005). Plant Cell Physiol. 46: 837–842.
263 263 Su, J.‐H., Havelius, K.G.V., Ho, F.M. et al. (2007). Biochemistry 46: 10703–10712.
264 264 Ioannidis, N., Nugent, J.H.A., and Petrouleas, V. (2002). Biochemistry 41: 9589–9600.
265 265 Rappaport, F., Ishida, N., Sugiura, M., and Boussac, A. (2011). Energy Environ. Sci. 4: 2520–2524.
266 266 Capone, M., Narzi, D., Bovi, D., and Guidoni, L. (2016). J. Phys. Chem. Lett. 7: 592–596.
267 267 Pérez Navarro, M., Ames, W.M., Nilsson, H. et al. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 15561–15566.
268 268 Oyala, P.H., Stich, T.A., Debus, R.J., and Britt, R.D. (2015). J. Am. Chem. Soc. 137: 8829–8837.
269 269 Askerka, M., Vinyard, D.J., Brudvig, G.W., and Batista, V.S. (2015). Biochemistry 54: 5783–5786.
270 270 Guo, Y., He, L.‐L., Zhao, D.‐X. et al. (2016). Phys. Chem. Chem. Phys. 18: 31551–31565.
271 271 Capone, M., Bovi, D., Narzi, D., and Guidoni, L. (2015). Biochemistry 54: 6439–6442.
272 272 Shoji, M., Isobe, H., and Yamaguchi, K. (2015). Chem. Phys. Lett. 636: 172–179.
273 273 Suga, M., Akita, F., Yamashita, K. et al. (2019). Science 366: 334.
274 274 Pushkar, Y., Davis, K.M., and Palenik, M.C. (2018). J. Phys. Chem. Lett. 9: 3525–3531.
275 275 Corry, T.A. and O'Malley, P.J. (2018). J. Phys. Chem. Lett. 9: 6269–6274.
276 276 Isobe, H., Shoji, M., Shen, J.‐R., and Yamaguchi, K. (2016). Inorg. Chem. 55: 502–511.
277 277 Isobe, H., Shoji, M., Suzuki, T. et al. (2019). Theory Comput. 15: 2375–2391.
278 278 Hillier, W. and Wydrzynski, T. (2004). Phys. Chem. Chem. Phys. 6: 4882–4889.
279 279 Hillier, W. and Wydrzynski, T. (2008). Coord.Chem. Rev. 252: 306–317.
280 280 Cox, N. and Messinger, J. (2013). Biochim. Biophys. Acta, Bioenerg. 1827: 1020–1030.
281 281 Siegbahn, P.E.M. (2008). Chem. Eur. J. 14: 8290–8302.
282 282 Siegbahn, P.E.M. (2009). Acc. Chem. Res. 42: 1871–1880.
283 283 Siegbahn, P.E.M. (2011). J. Photochem. Photobiol., B 104: 94–99.
284 284 Siegbahn, P.E.M. (2012). Phys. Chem. Chem. Phys. 14: 4849–4856.
285 285 Siegbahn, P.E.M. (2013). Biochim. Biophys. Acta, Bioenerg. 1827: 1003–1019.
286 286 Siegbahn, P.E.M. (2014). Phys. Chem. Chem. Phys. 16: 11893–11900.
287 287 Li, X. and Siegbahn, P.E.M. (2015). Phys. Chem. Chem. Phys. 17: 12168–12174.
288 288 Guo, Y., Li, H., He, L.‐L. et al. (2017). Phys. Chem. Chem. Phys. 19: 13909–13923.
289 289 Krewald, V., Neese, F., and Pantazis, D.A. (2019). J. Inorg. Biochem. 199: 110797.
290 290 Shoji, M., Isobe, H., Shigeta, Y. et al. (2018). Chem. Phys. Lett. 698: 138–146.
291 291 Siegbahn, P.E.M. and Crabtree, R.H. (1999). J. Am. Chem. Soc. 121: 117–127.
292 292 K. Yamaguchi, Y. Takahara, T. Fueno, in Applied Quantum Chemistry (Eds.: V. H. Smith Jr., H. F. Scheafer III, K. Morokuma), D. Reidel, Boston, MA, 1986, pp. 155‐184.
293 293 Lassalle‐Kaiser, B., Hureau, C., Pantazis, D.A. et al. (2010). Energy Environ. Sci. 3: 924–938.
294 294 Krishtalik, L.I. (1986). Biochim. Biophys. Acta, Bioenerg. 849: 162–171.
295 295 Krishtalik, L.I. (1990). Bioelectrochem. Bioenerg. 23: 249–263.
296 296 Zhang, B. and Sun, L. (2018). Dalton Trans. 47: 14381–14387.
297 297 Najafpour, M.M., Heidari, S., Balaghi, S.E. et al. (2017). Biochim. Biophys. Acta, Bioenerg. 1858: 156–174.
298 298 Kawashima, K., Takaoka, T., Kimura, H. et al. (2018). Nat. Commun. 9: 1247.
299 299 Shoji, M., Isobe, H., Shigeta, Y. et al. (2018). J. Phys. Chem. B 122: 6491–6502.
300 300 Shoji, M., Isobe, H., and Yamaguchi, K. (2019). Chem. Phys. Lett. 714: 219–226.
301 301 Yamaguchi, K., Shoji, M., Isobe, H. et al. (2018). Mol. Phys. 116: 717–745.
302 302 Paul, S., Neese, F., and Pantazis, D.A. (2017). Green Chem. 19: 2309–2325.
303 303 Meelich, K., Zaleski, C.M., and Pecoraro, V.L. (2008). Philos. Trans. R. Soc. B 363: 1271–1281.
304 304 Mukhopadhyay, S., Mandal, S.K., Bhaduri, S., and Armstrong, W.H. (2004). Chem. Rev. 104: 3981–4026.
305 305 Mishra, A., Wernsdorfer, W., Abboud, K.A., and Christou, G. (2005). Chem. Commun.: 54–56.
306 306 Koumousi, E.S., Mukherjee, S., Beavers, C.M. et al. (2011). Chem. Commun. 47: 11128–11130.
307 307 Kanady, J.S., Tsui, E.Y., Day, M.W., and Agapie, T. (2011). Science 333: 733–736.
308 308 Mukherjee, S., Stull, J.A., Yano, J. et al. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 2257–2262.
309 309 Tsui, E.Y., Kanady, J.S., and Agapie, T. (2013). Inorg. Chem. 52: 13833–13848.
310 310 Kanady, J.S., Lin, P.‐H., Carsch, K.M. et al. (2014). J. Am. Chem. Soc. 136: 14373–14376.
311 311 Han, Z., Horak, K.T., Lee, H.B., and Agapie, T. (2017). J. Am. Chem. Soc. 139: 9108–9111.
312 312 Lee, H.B., Tsui, E.Y., and Agapie, T. (2017). Chem. Commun. 53: 6832–6835.
313 313 Lee, H.B., Shiau, A.A., Oyala, P.H. et al. (2018). J. Am. Chem. Soc. 140: 17175–17187.
314 314 Zhang, C., Chen, C., Dong, H. et al. (2015). Science 348: 690–693.
315 315 Chen, C., Li, Y., Zhao, G. et al. (2017). ChemSusChem 10: 4403–4408.
316 316 Chen, C., Chen, Y., Yao, R. et al. (2019). Angew. Chem. Int. Ed. 58: 3939–3942.
317 317 Gerey, B., Gouré, E., Fortage, J. et al. (2016). Coord. Chem. Rev. 319: 1–24.
318 318 Li, Y., Yao, R., Chen, Y. et al. (2020). Catalysts 10: 185.
319 319 Tsui, E.Y. and Agapie, T. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 10084–10088.
320 320 Tsui, E.Y., Tran, R., Yano, J., and Agapie, T. (2013). Nat. Chem. 5: 293–299.
321 321 Krewald, V., Neese, F., and Pantazis, D.A. (2016). Phys. Chem. Chem. Phys. 18: 10739–10750.
322 322 Krewald, V. and Pantazis, D.A. (2016). Dalton Trans. 45: 18900–18908.
323 323 Romain, S., Rich, J., Sens, C. et al. (2011). Inorg. Chem. 50: 8427–8436.
324 324 Kurz, P. (2016). Top. Curr. Chem. 371: 49–72.
325 325 Frey, C.E., Wiechen, M., and Kurz, P. (2014). Dalton Trans. 43: 4370–4379.
326 326 Menezes, P.W., Indra, A., Littlewood, P. et al. (2014). ChemSusChem. 7: 2202–2211.
327 327 Najafpour, M.M., Abbasi Isaloo, M., Abasi, M., and Holynska, M. (2014). New J. Chem. 38: 852–858.
328 328 Wiechen, M., Najafpour, M.M., Allakhverdiev, S.I., and Spiccia, L. (2014). Energy Environ. Sci. 7: 2203–2212.
329 329 Najafpour, M.M., Renger, G., Hołyńska, M. et al. (2016). Chem. Rev. 116: 2886–2936.
330 330 Llobet, A. (2014). Molecular Water Oxidation Catalysis, Chichester: Wiley, p. 265.
331 331 Blakemore, J.D., Crabtree, R.H., and Brudvig, G.W. (2015). Chem. Rev. 115: 12974–13005.
332 332 Young, K.J., Brennan, B.J., Tagore, R., and Brudvig, G.W. (2015). Acc. Chem. Res. 48: 567–574.
333 333 Zhang, Q. and Guan, J. (2019). ChemSusChem 12: 3209–3235.
334 334 Kärkäs, M.D., Verho, O., Johnston, E.V., and Åkermark, B. (2014). Chem. Rev. 114: 11863–12001.
335 335 Arafa, W.A.A., Karkas, M.D., Lee, B.‐L. et al. (2014). Phys. Chem. Chem. Phys.
336 336 Sala, X., Romero, I., Rodríguez, M. et al. (2009). Angew. Chem. Int. Ed. 48: 2842–2852.
337 337 Zhang, B. and Sun, L. (2019). Chem. Soc. Rev. 48: 2216–2264.
338 338 Parent, A.R. and Sakai, K. (2014). ChemSusChem 7: 2070–2080.
339 339 Liao, R.‐Z., Kärkäs, M.D., Lee, B.‐L. et al. (2015). Inorg. Chem. 54: 342–351.
340 340 Fukuzumi, S., Lee, Y.‐M., and Nam, W. (2019). Dalton Trans. 48: 779–798.
341 341 Kärkäs, M.D. and Åkermark, B. (2016). Dalton Trans. 45: 14421–14461.
342 342 Garrido‐Barros, P., Gimbert‐Suriñach, C., Matheu, R. et al. (2017). Chem. Soc. Rev. 46: 6088–6098.
343 343 Ye, S., Ding, C., Liu, M. et al. (2019). Adv. Mater.: 1902069.
344 344 Thomsen, J.M., Huang, D.L., Crabtree, R.H., and Brudvig, G.W. (2015). Dalton Trans. 44: 12452–12472.
345 345 Matheu, R., Garrido‐Barros, P., Gil‐Sepulcre, M. et al. (2019). Nat. Rev. Chem. 3: 331–341.
346 346 Singh, A. and Spiccia, L. (2013). Coord. Chem. Rev. 257: 2607–2622.
347 347 Ellis, R.J. (1979). Trends Biochem. Sci 4: 241–244.
348 348 Raven, J. (2013). New Phytol. 198: 1–3.
349 349 Andersson, I. and Taylor, T.C. (2003). Arch. Biochem. Biophys. 414: 130–140.
350 350 Stec, B. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 18785.
351 351 Taylor, T.C. and Andersson, I. (1997). J. Mol. Biol. 265: 432–444.
352 352 Zhu, X.‐G., Long, S.P., and Ort, D.R. (2010). Annu. Rev. Plant Biol. 61: 235–261.
353 353 Parry, M.A.J., Andralojc, P.J., Scales, J.C. et al. (2012). J. Exp. Bot. 64: 717–730.
354 354 Simkin, A.J., López‐Calcagno, P.E., and Raines, C.A. (2019). J. Exp. Bot. 70: 1119–1140.
355 355 Brinkert, K. (2018). Energy Conversion in Natural and Artificial Photosynthesis, 127. Cham: Springer.
356 356 Nocera, D.G. (2012). Acc. Chem. Res. 45: 767–776.
357 357 Olmos, J.D.J. and Kargul, J. (2015). Int. J. Biochem. Cell Biol., vol. 66, 37–44.