Читать книгу Geochemistry - Группа авторов - Страница 31

References

Оглавление

1. Oze, C., Skinner, C., Schroth, A.W., Coleman, R.G., Growing up green on serpentine soils: biogeochemistry of serpentine vegetation in the Central Coast Range of California. Appl. Geochem., 23, 12, 3391–3403, 2008.

2. Alexander, E.B., Coleman, R.G., Harrison, S.P., Keeler-Wolfe, T., Serpentine geoecology of western North America: geology, soils, and vegetation, Oxford University Press, Oxford, 2007.

3. Bundschuh, J., Maity, J.P., Mushtaq, S., Vithanage, M., Seneweera, S., Schneider, J., Bhattacharya, P., Khan, N.I., Hamawand, I., Guilherme, L.R., Reardon-Smith, K., Medical geology in the framework of the sustainable development goals. Sci. Total Environ., 581, 87–104, 2017.

4. Gwenzi, W., Occurrence, behaviour, and human exposure pathways and health risks of toxic geogenic contaminants in serpentinitic ultramafic geological environments (SUGEs): A medical geology perspective. Sci. Total Environ., 700, 134622, https://doi.org/10.1016/j.scitotenv.2019.134622, 2020.

5. Davies, B.E., Bowman, C., Davies, T.C., Selinus, O., Medical geology: Perspectives and prospects, in: Essentials of medical geology, pp. 1–13, Springer, Dordrecht, 2013.

6. Goovaerts, P., Geostatistics: a common link between medical geography, mathematical geology, and medical geology. J. South. Afr. Inst. Min. Metall., 114, 8, 605–613, 2014.

7. Doocy, S., Daniels, A., Packer, C., Dick, A., Kirsch, T.D., The human impact of earthquakes: a historical review of events 1980-2009 and systematic literature review. PLoS Curr., 5, 2013, https://currents.plos.org/disasters/index.html%3Fp=6639.html.

8. Kut, K.M.K., Sarswat, A., Srivastava, A., Pittman Jr., C.U., Mohan, D., A review of fluoride in African groundwater and local remediation methods. Groundwater Sustainable Dev., 2, 190–212, 2016.

9. Oze, C., Fendorf, S., Bird, K.D., Coleman, G.R., Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am. J. Sci., 304, 67–101, 2004.

10. Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., Sanganyado, E., Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ., 636, 299–313, 2018.

11. Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G., Bird, D.K., H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci., 101, 35, 12818–12823, 2004.

12. Rajapaksha, A.U., Vithanage, M., Oze, C., Bandara, W.M.A.T., Weerasooriya, R., Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189, 1–9, 2012.

13. Manning, A.H., Mills, C.T., Morrison, J.M., Ball, L.B., Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA. Appl. Geochem., 62, 186–199, 2015.

14. Blades, M.L., Foden, J., Collins, A.S., Alemu, T., Woldetinsae, G., The origin of the ultramafic rocks of the Tulu Dimtu Belt, western Ethiopia–do they represent remnants of the Mozambique Ocean? Geol. Mag., 156, 62–82, 1–21, 2017.

15. Antoniadis, V., Golia, E.E., Liu, Y.T., Wang, S.L., Shaheen, S.M., Rinklebe, J., Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int., 124, 79–88, 2019.

16. Oberthür, T., Davis, D.W., Blenkinsop, T.G., Höhndorf, A., Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe - constraints on crustal evolution and metallogenesis of the Zimbabwe Craton. Precambrian Res., 113, 293–306, 2002.

17. Stribrny, B., Wellmer, F.-W., Burgath, K.-P., Oberthür, T., Tarkian, M., Pfeiffer, T., Unconventional PGE occurrences and PGE mineralization in the Great Dyke: metallogenic and economic aspects. Miner. Deposita, 35, 260–281, 2000.

18. Morrison, J.M., Goldhaber, M.B., Mills, C.T., Breit, G.N., Hooper, R.L., Holloway, J.A.M., Diehl, S.F., Ranville, J.F., Weathering and transport of chromium and nickel from serpentinite in the coast range ophiolite to the Sacramento Valley, California, USA. Appl. Geochem., 61, 72–86, 2015.

19. Alexander, E.B. and DuShey, J., Topographic and soil differences from peridotite to serpentinite. Geomorphology, 135, 271–276, 2011.

20. Oury, T.D., Sporn, T.A., Roggli, V.L. (Eds.), Pathology of asbestos-associated diseases, p. 357, Springer, Berlin, 2014.

21. Bloise, A., Barca, D., Gualtieri, A.F., Pollastri, S., Belluso, E., Trace elements in hazardous mineral fibres. Environ. Pollut., 216, 314–323, 2016a.

22. Bloise, A., Punturo, R., Catalano, M., Miriello, D., Cirrincione, R., Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy). Ital. J. Geosci., 135, 2, 268–279, 2016b.

23. Gualtieri, A.F., Lusvardi, G., Zoboli, A., Di Giuseppe, D., Gualtieri, M.L., Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. Environ. Res., 171, 550–557, 2019.

24. Holmes, E.P., Wilson, J., Schreier, H., Lavkulich, L.M., Processes affecting surface and chemical properties of chrysotile: Implications for reclamation of asbestos in the natural environment. Can. J. Soil Sci., 92, 1, 229–242, 2012.

25. Holmes, E.P. and Lavkulich, L.M., The effects of naturally occurring acids on the surface properties of chrysotile asbestos. J. Environ. Sci. Health, Part A, 49, 12, 1445–1452, 2014.

26. Bales, R.C., Surface chemical and physical behavior of chrysotile asbestos in natural waters and water treatment, Keck Laboratories of Environmental Engineering Science, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA. Report No. AC-8-84, 1984.

27. Bangira, C., Deng, Y., Loeppert, R.H., Hallmark, C.T., Stucki, J.W., Soil mineral composition in contrasting climatic regions of the Great Dyke, Zimbabwe. Soil Sci. Soc. Am. J., 75, 6, 2367–2378, 2011.

28. Shallari, S., Schwartz, C., Hasko, A., Morel, J.L., Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci. Total Environ., 209, 2–3, 133–142, 1998.

29. Vengosh, A., Coyte, R., Karr, J., Harkness, J.S., Kondash, A.J., Ruhl, L.S., Merola, R.B., Dywer, G.S., Origin of hexavalent chromium in drinking water wells from the piedmont aquifers of North Carolina. Environ. Sci. Technol. Lett., 3, 12, 409–414, 2016.

30. Namgung, S., Kwon, M.J., Qafoku, N.P., Lee, G., Cr(OH)3(s) oxidation induced by surface catalyzed Mn (II) oxidation. Environ. Sci. Technol., 48, 18, 10760–10768, 2014.

31. Dotaniya, M.L. and Meena, V.D., Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci., 85, 1, 1–12, 2015.

32. Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., Harvey, J., Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15820’N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chem. Geol., 234, 179–210, 2006.

33. Kodolányi, J., Pettke, T., Spandler, C., Kamber, B.S., Gméling, K., Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J. Petrol., 53, 2, 235–270, 2011.

34. Scambelluri, M., Rampone, E., Piccardo, G.B., Fluid and element cycling in subducted serpentinite: a trace-element study of the Erro–Tobbio high-pressure ultramafites (Western alps, NW Italy). J. Petrol., 42, 1, 55–67, 2001.

35. Paulick, H. and Machacek, E., The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives. Res. Policy, 52, 134–153, https://doi.org/10.1016/j.resourpol.2017.02.002, 2017.

36. WHO (World Health Organization), Chrysotile asbestos, World Health Organization, Geneva, 2014.

37. Davies, T.C. and Mundalamo, H.R., Environmental health impacts of dispersed mineralisation in South Africa. J. Afr. Earth Sci., 58, 4, 652–666, 2010.

38. Camargo, M.C., Stayner, L.T., Straif, K., Reina, M., Al-Alem, U., Demers, P.A., Landrigan, P.J., Occupational exposure to asbestos and ovarian cancer: a meta-analysis. Environ. Health Perspect., 119, 9, 1211–1217, 2011.

39. Hendrickx, M., Naturally occurring asbestos in eastern Australia: a review of geological occurrence, disturbance and mesothelioma risk. Environ. Geol., 57, 4, 909–926, 2009.

40. Braun, L. and Kisting, S., Asbestos-related disease in South Africa: the social production of an invisible epidemic. Am. J. Public Health, 96, 8, 1386–1396, 2006.

41. Cullen, M.R. and Baloyi, R.S., Chrysotile asbestos and health in Zimbabwe: I. Analysis of miners and millers compensated for asbestos-related diseases since independence (1980). Am. J. Ind. Med., 19, 2, 161–169, 1991.

42. Cullen, M.R., Lopez-Carrillo, L., Alli, B., Pace, P.E., Shalat, S.L., Baloyi, R.S., Chrysotile asbestos and health in Zimbabwe: II. Health status survey of active miners and millers. Am. J. Ind. Med., 19, 2, 171–182, 1991.

43. Miller, J.D., Collins, S.M., Omotayo, M., Martin, S.L., Dickin, K.L., Young, S.L., Geophagic earths consumed by women in western Kenya contain dangerous levels of lead, arsenic, and iron. Am. J. Hum. Biol., 30, 4, e23130, 2018.

44. Odongo, A.O., Moturi, W.N., Mbuthia, E.K., Heavy metals and parasitic geohelminths toxicity among geophagous pregnant women: a case study of Nakuru Municipality, Kenya. Environ. Geochem. Health, 38, 1, 123–131, 2016.

45. Young, S.L., Sherman, P.W., Lucks, J.B., Pelto, G.H., Why on earth?: Evaluating hypotheses about the physiological functions of human geophagy. Q. Rev. Biol., 86, 2, 97–120, 2011.

46. Toft, P., Wigle, D., Meranger, J.C., Mao, Y., Asbestos and drinking water in Canada. Sci. Total Environ., 18, 77–89, 1981.

47. Bales, R.C. and Morgan, J.J., Dissolution kinetics of chrysotile at pH 7 to 10. Geochim. Cosmochim. Acta, 49, 11, 2281–2288, 1985a.

48. Bales, R.C. and Morgan, J.J., Surface charge and adsorption properties of chrysotile asbestos in natural waters. Environ. Sci. Technol., 19, 12, 1213–1219, 1985b.

49. WHO (World Health Organization), Chromium in drinking water. Background document for preparation of WHO guidelines for drinking water quality, World Health Organization, Geneva, 2003.

50. Chrysochoou, M., Theologou, E., Bompoti, N., Dermatas, D., Panagiotakis, I., Occurrence, origin and transformation processes of geogenic chromium in soils and sediments. Curr. Pollut. Rep., 2, 4, 224–235, https://doi.org/10.1007/s40726-016-0044-2, 2016.

51. McClain, C.N. and Maher, K., Chromium fluxes and speciation in ultramafic catchments and global rivers. Chem. Geol., 426, 135–57, 2016.

52. Binda, G., Pozzi, A., Livio, F., Piasini, P., Zhang, C., Anomalously high concentration of Ni as sulphide phase in sediment and in water of a mountain catchment with serpentinite bedrock. J. Geochem. Explor., 190, 58–68, 2018.

53. Pavlova, D., Karadjova, I., Krasteva, I., Essential and toxic element concentrations in Hypericum perforatum. Aust. J. Bot., 63, 2, 152–158, 2015.

54. Street, R.A., Heavy metals in medicinal plant products - An African perspective. S. Afr. J. Bot., 82, 67–74, 2012.

55. Aloupi, M., Koutrotsios, G., Koulousaris, M., Kalogeropoulos, N., Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicol. Environ. Saf., 78, 184–194, 2012.

56. Nharingo, T., Ndumo, T., Moyo, M., Human health risks due to heavy metals through consumption of wild mushrooms from Macheke forest, Rail Block forest and Muganyi communal lands in Zimbabwe. Environ. Monit. Assess., 187, 738, 1–11, 2015.

57. Atanassova, J., Pavlova, D., Lazarova, M., Yurukova, L., Characteristics of honey from serpentine area in the Eastern Rhodopes Mt., Bulgaria. Biol. Trace Elem. Res., 173, 1, 247–258, 2016.

58. Salihaj, M. and Bani, A., The nickel content in honey derived from serpentine and non-serpentine areas of Kosovo. Albanian J. Agric. Sci., 557–563, 2017, https://www.researchgate.net/profile/Aida_Bani/publication/338825224_The_nickel_content_in_honey_derived_from_serpentine_and_non-serpentine_areas_of_Kosovo/links/5e2c77c492851c3aaddabf00/The-nickel-content-in-honey-derived-from-serpentine-and-non-serpentine-areas-of-Kosovo.pdf.

59. Hseu, Z.Y. and Lai, Y.J., Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan. Environ. Geochem. Health, 39, 6, 1325–1334, 2017.

60. Miranda, M., Benedito, J.L., Blanco-Penedo, I., López-Lamas, C., Merino, A., López-Alonso, M., Metal accumulation in cattle raised in a serpentine-soil area: relationship between metal concentrations in soil, forage and animal tissues. J. Trace Elem. Med. Biol., 23, 3, 231–238, 2009.

61. Martiniaková, M., Omelka, R., Jančová, A., Stawarz, R., Formicki, G., Concentrations of selected heavy metals in bones and femoral bone structure of bank (Myodes glareolus) and common (Microtus arvalis) voles from different polluted biotopes in Slovakia. Arch. Environ. Contam. Toxicol., 60, 3, 524–532, 2011.

62. Azam, I., Afsheen, S., Zia, A., Javed, M., Saeed, R., Sarwar, M.K., Munir, B., Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed Res. Int., 942751, 1–11, https://doi.org/10.1155/2015/942751, 2015.

63. Kouřimská, L. and Adámková, A., Nutritional and sensory quality of edible insects. NFS J., 4, 22–26, 2016.

64. Kamp, D.W., Asbestos-induced lung diseases: an update. Transl. Res., 153, 4, 143–152, 2009.

65. Boulanger, G., Andujar, P., Pairon, J.C., Billon-Galland, M.A., Dion, C., Dumortier, P., Brochard, P., Sobaszek, A., Bartsch, P., Paris, C., Jaurand, M.C., Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environ. Health, 13, 1, 59, http://www.ehjournal.net/content/13/1/59, 2014.

66. Røe, O.D. and Stella, G.M., Malignant Pleural Mesothelioma: History, Controversy, and Future of a Man-Made Epidemic, in: Asbestos and Mesothelioma, pp. 73–101, Springer, Chatham, 2017.

67. Bernstein, D.M., Rogers, R., Smith, P., The biopersistence of Canadian chrysotile asbestos following inhalation: final results through 1 year after cessation of exposure. Inhalation Toxicol., 17, 1, 1–14, 2005.

68. Hodgson, J.T. and Darnton, A., Mesothelioma risk from chrysotile. Comment on “Lung cancer mortality and fibre exposures among North Carolina asbestos textile workers”. Occup. Environ. Med., 67, 6, 432, 2010.

69. Wang, X., Lin, S., Yano, E., Qiu, H., Igtanius, T.S., Tse, L., Lan, Y., Wang, M., Mortality in a Chinese chrysotile miner cohort. Int. Arch. Occup. Environ. Health, 85, 4, 405–412, 2012.

70. Bernstein, D.M. and Hoskins, J.A., The health effects of chrysotile: current perspective based upon recent data. Regul. Toxicol. Pharm., 45, 3, 252–264, 2006.

71. Bernstein, D.M., The health risk of chrysotile asbestos. Curr. Opin. Pulm. Med., 20, 4, 366–370, 2014.

72. ZGS (Zimbabwe Geological Survey), Minerals of Zimbabwe. Available at: http://www.mines.gov.zw/?q=minerals-zimbabwe Accessed on 3 January 2019, 2019.

73. IARC (International Agency for Research on Cancer), A review of human carcinogens. Part C: Arsenic, metals, fibres, and dusts, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon, 2009.

74. IARC (International Agency for Research on Cancer), Arsenic, metals, fibres, and dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, p. 11, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 100(PT C), Lyon, 2012.

75. Papanikolaou, G. and Pantopoulos, K., Iron metabolism and toxicity. Toxicol. Appl. Pharmacol., 202, 2, 199–211, 2005.

76. Puntarulo, S., Iron, oxidative stress and human health. Mol. Aspects Med., 26, 4-5, 299–312, 2005.

77. Moyo, V.M., Mandishona, E., Hasstedt, S.J., Gangaidzo, I.T., Gomo, Z.A., Khumalo, H., Saungweme, T., Kiire, C.F., Paterson, A.C., Bloom, P., MacPhail, A.P., Evidence of genetic transmission in African iron overload. Blood, 91, 3, 1076–1082, 1998.

78. Gordeuk, V.R., African iron overload. Semin. Hematol., 39, 4, 263–269, 2002.

79. Marzec-Wróblewska, U., Kaminski, P., Lakota, P., Ludwikowski, G., Szymanski, M., Wasilow, K., Stuczynski, T., Bucinski, A., Jerzak, L., Determination of rare earth elements in human sperm and association with semen quality. Arch. Environ. Contam. Toxicol., 69, 2, 191–201, 2015.

80. Pagano, G., Guida, M., Tommasi, F., Oral, R., Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf., 115, 40–48, 2015.

81. Vergauwen, E., Vanbinst, A.M., Brussaard, C., Janssens, P., De Clerck, D., Van Lint, M., Houtman, A.C., Michel, O., Keymolen, K., Lefevere, B., Bohler, S., Central nervous system gadolinium accumulation in patients undergoing periodical contrast MRI screening for hereditary tumor syndromes. Hered. Cancer Clin. Pract., 16, 1, 2, 2018.

82. Bandara, T., Herath, I., Kumarathilaka, P., Hseu, Z.Y., Ok, Y.S., Vithanage, M., Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environ. Geochem. Health, 39, 2, 391–401, 2017.

83. Kumarathilaka, P. and Vithanage, M., Influence of Gliricidia sepium biochar on attenuate perchlorate-induced heavy metal release in serpentine soil. J. Chem., Article ID 6180636, 1–9, https://doi.org/10.1155/2017/6180636, 2017.

84. Hamilton, J.L., Wilson, S.A., Morgan, B., Turvey, C.C., Paterson, D.J., Jowitt, S.M., McCutcheon, J., Southam, G., Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery. Int. J. Greenhouse Gas Control, 71, 155–167, 2018.

85. Gwenzi, W., Chaukura, N., Noubactep, C., Mukome, F.N.D., Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manage., 197, 732–749, 2017.

Email: wgwenzi@yahoo.co.uk; wgwenzi@agric.uz.ac.zw; (ORCID: http://orcid.org.0000-0003-3149-1052)

Geochemistry

Подняться наверх