Читать книгу Digital Cities Roadmap - Группа авторов - Страница 54
References
Оглавление1. Guikema, S. and Gardoni, P., Reliability estimation for networks of reinforced concrete bridges. ASCE J. Infrastruct. Syst., 15, 61–69, 2009.
2. Kajitani, Y., Okada, N., Tatano, H., Measuring quality of human community life by spatial temporal age group distributions—Case study of recovery process in a disaster-affected region. Nat. Hazards Rev., 6, 1, 41–47, 2005.
3. Kang, W.H., Song, J., Gardoni, P., Matrix-based system reliability method and applications to bridge networks. Reliab. Eng. Syst. Safe., 93, 1584–93, 2008.
4. Koliou, M., Van De Lindt, J.W., McAllister, T.P., Ellingwood, B.R., Dillard, M., Cutler, H., State of the research in community resilience: Progress and challenges. Sustain. Resilient Infrastruct., 5, 3, 131–151, 2018.
5. Lee, Y.-J., Song, J., Gardoni, P., Lim, H.-W., Post-hazard flow capacity of bridge transportation networks considering structural deterioration of bridges. Struct. Infrastruct. Eng., 7, 7, 509–21, 2011.
6. MacLean, D., Gardoni, P., Murphy, C., Rowell, A. (Eds.), Societal Risk Management of Natural Hazards, Springer, New York, 2016.
7. Mardfekri, M. and Gardoni, P., Probabilistic demand models and fragility estimates for offshore wind turbine support structures. Eng. Struct., 52, 2013, 478–87, 2013.
8. Mardfekri, M. and Gardoni, P., Multi-hazard reliability assessment of offshore wind turbines. Wind Energy, 18, 8, 1433–50, 2015.
9. Mardfekri, M., Gardoni, P., Bisadi, V., Service reliability of offshore wind turbines. Int. J. Sustainable Energy, 34, 7, 468–84, 2015.
10. Martins, N., Sustainability economics, ontology and the capability approach. Ecol. Econ., 72, 1–4, 2011.
11. May, P., Organizational and Societal Consequences for Performance-Based Earthquake Engineering, PEER 2001/04, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, Berkeley, CA, 2011.
12. Chan, M., Estve, D., Escriba, C., Campo, E., A review of smart homes present state and future challenges. Comput. Methods Programs Biomed., 91, 1, 55–81, [Online]. http://www.sciencedirect.com/science/article/pii/S0169260708000436, Jul. 2008.
13. Alam, M.R., Reaz, M.B.I., Ali, M.A.M., A Review of Smart Homes—Past, Present, and Future. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.), 42, 6, 1190–1203, Nov. 2012.
14. Lobaccaro, G., Carlucci, S., Lfstrm, E., Lobaccaro, G., Carlucci, S., Lfstrm, E., A Review of Systems and Technologies for Smart Homes and Smart Grids. Energies, 9, 5, 348, [Online] https://www.mdpi.com/1996-1073/9/5/348, May 2016.
15. Pan, J., Jain, R., Paul, S., A Survey of Energy Efficiency in Buildings and Microgrids using Networking Technologies. IEEE Commun. Surv. Tut., 16, 3, 1709–1731, 2014.
16. Ni, Q., Garca Hernando, A.B., de la Cruz, I.P., The Elderlys Independent Living in Smart Homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development. Sensors, 15, 5, 11 312–11 362, [Online] Available: http://www.mdpi.com/1424-8220/15/5/11312, May 2015.
17. Rashidi, P. and Mihailidis, A., A Survey on Ambient-Assisted Living Tools for Older Adults. IEEE J. Biomed. Health Inform., 17, 3, 579–590, May 2013.
18. Peetoom, K.K.B., Lexis, M.A.S., Joore, M., Dirksen, C.D., De Witte, L.P., Literature review on monitoring technologies and their outcomes in independently living elderly people, Disability and Rehabilitation. Assist. Technol., 10, 4, 271–294, 2015.
19. Salih, A. and Abraham, A., A review of ambient intelligence assisted healthcare monitoring. Int. J. Comput. Inf. Syst. Ind. Manage. (IJCISIM), 5, 2013.
20. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., Context Aware Computing for The Internet of Things: A Survey. IEEE Commun. Surv. Tut., 16, 1, 414–454, 2014.
21. Tsai, C.W., Lai, C.F., Chiang, M.C., Yang, L.T., Data Mining for Internet of Things: A Survey. IEEE Commun. Surv. Tut., 16, 1, 77–97, 2014.
22. Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P., Machine learning for internet of things data analysis: A survey. Digit. Commun. Netw., 4, 3, 161–175, [Online] Available: http://www.sciencedirect.com/science/article/pii/S235286481730247X, Aug. 2018.
23. McAllister, T., Developing guidelines and standards for disaster resilience of the built environment: A research needs assessment, NIST Technical Note 1795, Gaithersburg, MD, 2013.
24. Mileti, D.S., Disasters by Design: A Reassessment of Natural Hazards in the United States, Joseph Henry Press, Washington, DC, 1999.
25. Intelligent CRE for Enterprise: Smart Buildings, Intelligent Workplace, and Management Systems 2018–2023, Research and Markets, Technical Report, 4559384, Business Wire, Dublin, Jun. 2018, [Online] Available: https://www.researchandmarkets.com/reports/4559384/intelligent-cre-for-enterprise-smart-buildings.
26. Chan, M., Estve, D., Escriba, C., Campo, E., A review of smart homes Present state and future challenges. Comput. Methods Programs Biomed., 91, 1, 55–81, [Online], Available: http://www.sciencedirect.com/science/article/pii/ S0169260708000436, Jul. 2008.
27. Alam, M.R., Reaz, M.B.I., Ali, M.A.M., A Review of Smart Homes—Past, Present, and Future. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.), 42, 6, 1190–1203, Nov. 2012.
28. Lobaccaro, G., Carlucci, S., Lfstrm, E., Lobaccaro, G., Carlucci, S., Lfstrm, E., A Review of Systems and Technologies for Smart Homes and Smart Grids. Energies, 9, 5, 348, [Online] Available: https://www.mdpi.com/1996-1073/9/5/348, May 2016.
29. Pan, J., Jain, R., Paul, S., A Survey of Energy Efficiency in Buildings and Microgrids using Networking Technologies. IEEE Commun. Surv. Tut., 16, 3, 1709–1731, 2014.
30. Rashidi, P. and Mihailidis, A., A Survey on Ambient-Assisted Living Tools for Older Adults. IEEE J. Biomed. Health Inform., 17, 3, 579–590, May 2013.
31. Peetoom, K.K.B., Lexis, M.A.S., Joore, M., Dirksen, C.D., De Witte, L.P., Literature review on monitoring technologies and their outcomes in independently living elderly people, Disability and Rehabilitation. Assist. Technol., 10, 4, 271–294, Jul. 2015.
32. Salih, A. and Abraham, A., A review of ambient intelligence assisted healthcare monitoring. Int. J. Comput. Inf. Syst. Ind. Manage. (IJCISIM), 5, 741–750, 2013.
33. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., Context Aware Computing for The Internet of Things: A Survey. IEEE Commun. Surv. Tut., 16, 1, 414–454, 2014.
34. Tsai, C.W., Lai, C.F., Chiang, M.C., Yang, L.T., Data Mining for Internet of Things: A Survey. IEEE Commun. Surv. Tut., 16, 1, 77–97, 2014.
35. Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P., Machine learning for internet of things data analysis: A survey. Digit. Commun. Netw., 4, 3, 161–175, [Online] Available: http://www.sciencedirect.com/science/article/pii/S235286481730247X, Aug. 2018.
36. Institute for Building Efficiency, Sep. 2018, [Online] Available: https://buildingefficiencyinitiative.org/.
37. Zafari, F., Papapanagiotou, I., Christidis, K., Microlocation for Internet-of-Things-Equipped Smart Buildings. IEEE Internet Things J., 3, 1, 96–112, Feb. 2016.
38. Kehoe, M., Cosgrove, M., Gennaro, S., Harrison, C., Harthoorn, W., Hogan, J., Meegan, J., Nesbitt, P., Peters, C., Smarter cities series: A foundation for understanding IBM smarter cities, Redguides for Business Leaders, IBM, 2011, https://www.computer.org/csdl/proceedings-article/hpcc/2016/07828528/12OmNz6iONv.
39. European Commission and Directorate-General for the Information Society and Media. ICT for a low carbon economy: Smart electricity distribution networks, EUR-OP, Luxembourg, 2009.
40. Badica, C., Brezovan, M., Bdic, A., An Overview of Smart Home Environments: Architectures, Technologies and Applications, in CEUR Workshop Proceedings, Thessaloniki, Greece, Volume 1036, pp. 78–85, Sep. 2013.
41. Flax, B.M., Intelligent buildings. IEEE Commun. Mag., 29, 4, 24–27, Apr. 1991.
42. The Introduction to Smart Home Technologies Information Technology Essay, Dec. 2017, [Online] Available: https://www.uniassignment.com/essay-samples/informationtechnology/theintroduction-to-smart-home-technologies-informationtechnology-essay.php.
43. Murphy, C. and Gardoni, P., The role of society in engineering risk analysis: A capabilities-based approach. Risk Anal., 26, 4, 1073–83, 2006.
44. Murphy, C. and Gardoni, P., Determining public policy and resource allocation priorities for mitigating natural hazards: A capability-based approach. Sci. Eng. Ethics, 13, 4, 489–504, 2007.
45. Murphy, C. and Gardoni, P., The acceptability and the tolerability of societal risks: A capabilities-based approach. Sci. Eng. Ethics, 14, 1, 77–92, 2008.
46. Murphy, C. and Gardoni, P., Assessing capability instead of achieved functioning’s in risk analysis. J. Risk Res., 13, 2, 137–47, 2010.
47. Murphy, C. and Gardoni, P., Design, risk and capabilities, in: Human Capabilities, Technology, and Design, J. van den Hoven and I. Oosterlaken (Eds.), Springer, Heidelberg, 2011a.
48. Murphy, C. and Gardoni, P., Evaluating the source of the risks associated with natural events. Res Publ., 17, 2, 125–40, 2011b.
49. Alzubi, J., Nayyar, A., Kumar, A., Machine learning from theory to algorithms: An overview. J. Phys.: Conf. Ser., 1142, 2018.
50. Rameshwar, R., Solanki, A., Nayyar, A., Mahapatra, B., Green and smart buildings: A key to sustainable global solutions, in: Green Building Management and Smart Automation, pp. 146–163, IGI Global, 2020, https://www.igi-global.com/chapter/green-and-smart-buildings/231678.
51. Solanki, A. and Nayyar, A., Green internet of things (G-IoT): ICT technologies, principles, applications, projects, and challenges, in: Handbook of Research on Big Data and the IoT, pp. 379-405, IGI Global, 2019, https://www.igi-global.com/chapter/green-internet-of-things-g-iot/224280.
52. Krishnamurthi, R., Nayyar, A., Solanki, A., Innovation Opportunities through Internet of Things (IoT) for Smart Cities, Green and Smart Technologies for Smart Cities, pp. 261–292, CRC Press, Boca Raton, FL, USA, 2019.
53. Mahapatra, B. and Nayyar, A., Home energy management system (HEMS): Concept, architecture, infrastructure, challenges and energy management schemes. Energy Syst., 1–27, 2019.
54. Das, S. and Nayyar, A., Innovative Ideas to Manage Urban Traffic Congestion in Cognitive Cities, in: Driving the Development, Management, and Sustainability of Cognitive Cities, pp. 139–162, IGI Global, 2019, https://www.igi-global.com/chapter/innovative-ideas-to-manage-urban-traffic-conges-tion-in-cognitive-cities/226920.
55. Gardoni, P., Routledge Handbook of Sustainable and Resilient Structure, Taylor & Francis, 2018, https://doi.org/10.4324/9781315142074..
56.Qolomany, B., Al-Fuqaha, A., Gupta, A., Benhaddou, D., Alwajidi, S., Qadir, J., Fong, A.C., Leveraging Machine Learning and Big Data for Smart Buildings: A Comprehensive Survey, IEEE conference, 7, 90316–90356, 2019.
57. Faber, M.H. and Qin, J., On the relationship between resilience and sustainability for infrastructure systems. In International Symposium on Sustainability and Resiliency of Infrastructure (ISSRI2016), S.-S. Chen and A.H.-S. Ang (eds.), Taiwan Tech, Taipei, Taiwan, 2016.
58. Faber, M.H. et al., Bridging resilience and sustainability decision analysis for design and management of infrastructure systems. Journal for Sustainable and Resilient Infrastructure, Taylor and Francis, 5, 102–124, 2018.
59. Linkov, I., Bridges, T., Creutzig, F., Decker, J., Fox-Lent, C., Kröger, W., Lambert, J. H., Levermann, A., Montreuil, B., Nathwani, J., Nyer, R., Renn, O., Scharte, B., Scheffler, A., Schreurs, M., Thiel-Clemen, T., Changing the resilience paradigm. Nat. Clim. Change, 4, 407–409, 2014.
60. Cimellaro, G.P., Reinhorn, A.M., Bruneau, M., Framework for analytical quantification of disaster resilience. Eng. Struct., 32, 3639–49, 2009.
61. Sharma, N., Tabandeh, A., Gardoni, P., Resilience analysis: A mathematical formulation to model resilience of engineering systems. Sustainable and Resilient Infrastructure, 3, 2, 49–67, 2017.
62. Tamvakis, P. and Xenidis, Y., Comparative evaluation of resilience quantification methods for infrastructure systems, 26th IPMA World Congress, Crete, Greece, 2012, Elsevier. Procedia – Soc. Behav. Sci., 74, 339–48, 2013.
63. Hauschild, M.Z., Better – but is it good enough? On the need to consider both eco-efficiency and eco-effectiveness to gauge industrial sustainability. In The 22nd CIRP conference on Life Cycle Engineering – Procedia CIRP, 29, 1– 7, 2015.
64. Gardoni, P. and Murphy, C., Society-based design: Developing sustainable and resilient communities. Sustainable and Resilient Infrastructure, 10, 1–16, 2018, https://www.tandfonline.com/doi/abs/10.1080/23789689.2018.1448667?journalCode=tsri20.
65. Guidotti, R., Gardoni, P., Rosenheim, N., Integration of physical infrastructure and social systems in communities’ reliability and resilience analysis. Reliab. Eng. Syst. Saf., 185, 476–492, 2018.
66. Boore, D.M. and Atkinson, G.M., Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq. Spectra, 24, 99–138, 2008.
67. Bai, J.-W., Hueste, M.B.D., Gardoni, P., Probabilistic assessment of structural damage due to earthquakes for buildings in mid-America. J. Struct. Eng., 135, 1155–63, 2009.
69. Wang, Y., Gardoni, P., Murphy, C., Guerrier, S., Predicting fatality rates due to earthquakes accounting for community vulnerability. Earthq. v, 35(2), 502–513, 2019.
68. Dueñas-Osorio, L., and Vemuru, Seismic response of critical interdependent networks. Earthq. Eng. Struct. Dyn., 36, 285–306, 2009.
70. Ouyang, M., Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf., 121, 43–60, 2014.
71. Bates, F.L. and Peacock, W.G., Measuring disaster impact on household living conditions: The domestic assets approach. IJMED, 10, 1, 133–160, 1992.
*Corresponding author: kaswankuldeep@gmail.com