Читать книгу Genetic Disorders and the Fetus - Группа авторов - Страница 164

References

Оглавление

1 1. Bernischke K, Burton GJ, Baerge RN. Pathology of the human placenta, 6th edn. Berlin: Springer‐Verlag, 2012.

2 2. Barker D, Thornburg K. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta 2013; 34:841.

3 3. Burton G, Fowden A. The placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta 2012; 33:S23.

4 4. Haeussner E, Schmitz C, Von Koch F, et al. Birth weight correlates with size but not shape of the normal human placenta. Placenta 2013; 34:574.

5 5. Alwasel S, Abotalib Z, Aljarallah J, et al. Secular increase in placental weight in Saudi Arabia. Placenta 2011; 32:391.

6 6. Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest 2010; 120:1016.

7 7. Staun‐Ram E, Shalev E. Human trophoblast function during the implantation process. Reprod Biol Endocrinol 2005; 3:56.

8 8. Luo S, Ishibashi O, Ishikawa G, et al. Human villous trophoblasts express and secrete placenta‐specific microRNAs into maternal circulation via exosomes. Biol Reprod 2009; 81:717.

9 9. Mincheva‐Nilsson L, Baranov V. Placenta‐derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol 2014; 72:440.

10 10. Salomon C, Torres MJ, Kobayashi M, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One 2014; 9:e98667.

11 11. Xie L, Mouillet J, Chu T, et al. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology 2014; 155:4975.

12 12. Hassold T, Abruzzo M, Adkins K, et al. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen 1996; 28:167.

13 13. Hassold T, Chen N, Funkhouser J, et al. A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet 1980; 44:151.

14 14. Blois SM, Sulkowski G, Tirado‐González I, et al. Pregnancy‐specific glycoprotein 1 (PSG1) activates TGF‐β and prevents dextran sodium sulfate (DSS)‐induced colitis in mice. Mucosal Immunol 2014; 7:348.

15 15. Noguer‐Dance M, Abu‐Amero S, Al‐Khtib M, et al. The primate‐specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010; 19:3566.

16 16. Coughlan C, Ledger W, Wang Q, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28:14.

17 17. PrabhuDas M, Bonney E, Caron K, et al. Immune mechanisms at the maternal‐fetal interface: perspectives and challenges. Nat Immunol 2015; 16:328.

18 18. Roberts VH, Morgan T, Bednarek P, et al. Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: new insights from contrast‐enhanced ultrasound and tissue histopathology. Hum Reprod 2017; 32:2382.

19 19. Wang Y. Vascular biology of the placenta. San Rafael, CA: Morgan & Claypool Life Sciences, 2010:1–98.

20 20. Kingdom J, Huppertz B, Seaward G, et al. Development of the placental villous tree and its consequences for fetal growth. Eur J Obstet Gynecol Reprod Biol 2000; 92:35.

21 21. Avagliano L, Bulfamante GP, Morabito A, et al. Abnormal spiral artery remodelling in the decidual segment during pregnancy: from histology to clinical correlation. J Clin Pathol 2011; 64:1064.

22 22. Sibley C. Understanding placental nutrient transfer – why bother? New biomarkers of fetal growth. J Physiol (Lond) 2009; 587:3431.

23 23. Syme MR, Paxton JW, Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 2004; 43:487.

24 24. Henderson GI, Perez T, Schenker S, et al. Maternal‐to‐fetal transfer of 5‐methyltetrahydrofolate by the perfused human placental cotyledon: evidence for a concentrative role by placental folate receptors in fetal folate delivery. J Lab Clin Med 1995; 126:184.

25 25. Solanky N, Jimenez AR, D'Souza S, et al Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta 2010; 31:134.

26 26. Constancia M, Angiolini E, Sandovici I, et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci U S A 2005; 102:19219.

27 27. Coan P, Vaughan O, Sekita Y, et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol (Lond) 2010; 588:527.

28 28. Bradley J, Leibold EA, Harris ZL, et al. Influence of gestational age and fetal iron status on IRP activity and iron transporter protein expression in third‐trimester human placenta. Am J Physiol Regul Integr Comp Physiol 2004; 287:R894.

29 29. Gangestad SW, Caldwell Hooper AE, Eaton MA. On the function of placental corticotropin‐releasing hormone: a role in maternal‐fetal conflicts over blood glucose concentrations. Biol Rev 2012; 87:856.

30 30. Mikheev AM, Nabekura T, Kaddoumi A, et al. Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study. Reprod Sci 2008; 15:866.

31 31. Winn VD, Haimov‐Kochman R, Paquet AC, et al. Gene expression profiling of the human maternal‐fetal interface reveals dramatic changes between midgestation and term. Endocrinology 2007; 148:1059.

32 32. Novakovic B, Yuen RK, Gordon L, et al. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics 2011; 12:529.

33 33. Robin C, Bollerot K, Mendes S, et al. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 2009; 5:385.

34 34. Bárcena A, Muench MO, Kapidzic M, et al. Fisher SJ. A new role for the human placenta as a hematopoietic site throughout gestation. Reprod Sci 2009; 16:178.

35 35. Tang Z, Abrahams VM, Mor G, et al. Placental Hofbauer cells and complications of pregnancy. Ann N Y Acad Sci 2011; 1221:103.

36 36. Mouillet JF, Ouyang Y, Bayer A, et al. The role of trophoblastic microRNAs in placental viral infection. Int J Dev Biol 2014; 58:281.

37 37. Bastek JA, Gómez LM, Elovitz MA. The role of inflammation and infection in preterm birth. Clin Perinatol 2011; 38:385.

38 38. Galinsky R, Polglase GR, Hooper SB, et al. The consequences of chorioamnionitis: preterm birth and effects on development. J Pregnancy 2013; 2013:412831.

39 39. Konwar C, Del Gobbo GF, Terry J, et al. Association of a placental interleukin‐6 genetic variant (rs1800796) with DNA methylation, gene expression and risk of acute chorioamnionitis. BMC Med Genet 2019; 20:36.

40 40. Pereyra S, Bertoni B, Sapiro R. Interactions between environmental factors and maternal–fetal genetic variations: strategies to elucidate risks of preterm birth. Eur J Obstet Gynecol Reprod Biol 2016; 202:20.

41 41. Ragsdale HB, Kuzawa CW, Borja JB, et al. Regulation of inflammation during gestation and birth outcomes: Inflammatory cytokine balance predicts birth weight and length. Am J Hum Biol 2019; 31:e23245.

42 42. Alberry M, Soothill P. Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed 2007; 92:F62.

43 43. Sheridan C. Intrauterine growth restriction: diagnosis and management. Aust Fam Physician 2005; 34:717.

44 44. Halliday HL. Neonatal management and long‐term sequelae. Best Pract Res Clin Obstet Gynecol 2009; 23:871.

45 45. Pallotto EK, Kilbride HW. Perinatal outcome and later implications of intrauterine growth restriction. Clin Obstet Gynecol 2006; 49:257.

46 46. Yanney M, Marlow N. Paediatric consequences of fetal growth restriction. Semin Fetal Neonatal Med 2004; 9:411.

47 47. Barker DJ, Thornburg KL. The obstetric origins of health for a lifetime. Clin Obstet Gynecol 2013; 56:511.

48 48. Benton SJ, McCowan LM, Heazell AE, et al. Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction. Placenta 2016; 42:1.

49 49. Schoofs K, Grittner U, Engels T, et al. The importance of repeated measurements of the sFlt‐1/PlGF ratio for the prediction of preeclampsia and intrauterine growth restriction. J Perinat Med 2014; 42:61.

50 50. Crispi F, Domínguez C, Llurba E, et al. Placental angiogenic growth factors and uterine artery Doppler findings for characterization of different subsets in preeclampsia and in isolated intrauterine growth restriction. Obstet Gynecol 2006; 195:201.

51 51. Redline R. Placental pathology: a systematic approach with clinical correlations. Placenta 2008; 29:86.

52 52. Junaid T, Brownbill P, Chalmers N, et al. Fetoplacental vascular alterations associated with fetal growth restriction. Placenta 2014; 35:808.

53 53. Robinson WP, Peñaherrera MS, Jiang R, et al. Assessing the role of placental trisomy in preeclampsia and intrauterine growth restriction. Prenat Diagn 2010; 30:1.

54 54. Miura K, Yoshiura K, Miura S, et al. Clinical outcome of infants with confined placental mosaicism and intrauterine growth restriction of unknown cause. Am J Med Genet A 2006; 140:1827.

55 55. Lestou V, Desilets V, Lomax B, et al. Comparative genomic hybridization: a new approach to screening for intrauterine complete or mosaic aneuploidy. Am J Med Genet 2000; 92:281.

56 56. Wilkins‐Haug L, Quade B, Morton CC. Confined placental mosaicism as a risk factor among newborns with fetal growth restriction. Prenatal Diag 2006; 26:428.

57 57. Grati FR, Ferreira J, Benn P, et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell‐free DNA. Genet Med 2020; 22(2):309.

58 58. Bianchi DW, Chiu RW. Sequencing of circulating cell‐free DNA during pregnancy. N Engl J Med 2018; 379:464.

59 59. Penaherrera M, Barrett I, Brown C, et al. An association between skewed X‐chromosome inactivation and abnormal outcome in mosaic trisomy 16 confined predominantly to the placenta. Clin Genet 2000; 58:436.

60 60. Redline RW, Hassold T, Zaragoza M. Determinants of villous trophoblastic hyperplasia in spontaneous abortions. Mod Pathol 1998; 11:762.

61 61. Astner A, Schwinger E, Caliebe A, et al. Sonographically detected fetal and placental abnormalities associated with trisomy 16 confined to the placenta. A case report and review of the literature. Prenat Diagn 1998; 18:1308.

62 62. Zaragoza MV, Millie E, Redline RW, et al. Studies of non‐disjunction in trisomies 2, 7, 15, and 22: does the parental origin of trisomy influence placental morphology? J Med Genet 1998; 35:924.

63 63. Eggermann T, Wollmann HA, Kuner R, et al. Molecular studies in 37 Silver‐Russell syndrome patients: frequency and etiology of uniparental disomy. Hum Genet 1997; 100:415.

64 64. Kotzot D, Schmitt S, Bernasconi F, et al. Uniparental disomy 7 in Silver–Russell syndrome and primordial growth retardation. Hum Mol Genet 1995; 4:583.

65 65. Henderson KG, Shaw TE, Barrett IJ, et al. Distribution of mosaicism in human placentae. Hum Genet 1996; 97:650.

66 66. Malvestiti F, Agrati C, Grimi B, et al. Interpreting mosaicism in chorionic villi: results of a monocentric series of 1001 mosaics in chorionic villi with follow‐up amniocentesis. Prenat Diagn 2015; 35:1117.

67 67. Kalousek DK, Dill FJ. Chromosomal mosaicism confined to the placenta in human conceptions. Science 1983; 221:665.

68 68. Hahnemann JM, Vejerslev LO. European collaborative research on mosaicism in CVS (EUCROMIC) – fetal and extrafetal cell lineages in 192 gestations with CVS mosaicism involving single autosomal trisomy. Am J Med Genet 1997; 70:179.

69 69. Yong PJ, Barrett IJ, Kalousek DK, et al. Clinical aspects, prenatal diagnosis, and pathogenesis of trisomy 16 mosaicism. J Med Genet. 2003; 40:175.

70 70. Benn P. Trisomy 16 and trisomy 16 mosaicism: a review. Am J Med Genet 1998; 79:121.

71 71. Sparks TN, Thao K, Norton ME. Mosaic trisomy 16: what are the obstetric and long‐term childhood outcomes? Genet Med 2017; 19:1164.

72 72. Taylor TH, Gitlin SA, Patrick JL, et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update 2014; 20:571.

73 73. Lau AW, Brown CJ, Peñaherrera M, et al. Skewed X‐chromosome inactivation is common in fetuses or newborns associated with confined placental mosaicism. Am J Hum Genet 1997; 61:1353.

74 74. Hall AL, Drendel HM, Verbrugge JL, et al. Positive cell‐free fetal DNA testing for trisomy 13 reveals confined placental mosaicism. Genet Med 2013; 15:729.

75 75. Mao J, Wang T, Wang B, et al. Confined placental origin of the circulating cell free fetal DNA revealed by a discordant non‐invasive prenatal test result in a trisomy 18 pregnancy. Clin Chim Acta 2014; 433:190.

76 76. Van Opstal D, Srebniak MI, Polak J, et al. False negative NIPT results: risk figures for chromosomes 13, 18 and 21 based on chorionic villi results in 5967 cases and literature review. PLoS One 2016; 11:e0146794.

77 77. Hartwig TS, Ambye L, Sørensen S, et al. Discordant non‐invasive prenatal testing (NIPT) – a systematic review. Prenat Diagn 2017; 37:527.

78 78. Brubaker D, Liu Y, Wang J, et al. Finding lost genes in GWAS via integrative–omics analysis reveals novel sub‐networks associated with preterm birth. Hum Mol Genet 2016:ddw325.

79 79. Jacob K, Robinson W, Lefebvre L. Beckwith–Wiedemann and Silver–Russell syndromes: opposite developmental imbalances in imprinted regulators of placental function and embryonic growth. Clin Genet 2013; 84:326.

80 80. Eggermann T, Begemann M, Spengler S, et al. Genetic and epigenetic findings in Silver‐Russell syndrome. Pediatr Endocrinol Rev 2010; 8:86.

81 81. Azzi S, Sas TC, Koudou Y, et al. Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post‐natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 2014; 9:338.

82 82. Liu Y, Murphy SK, Murtha AP, et al. Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements. Epigenetics 2012; 7:735.

83 83. Lim AL, Ng S, Leow SC, et al. Epigenetic state and expression of imprinted genes in umbilical cord correlates with growth parameters in human pregnancy. J Med Genet 2012; 49:689.

84 84. Cordeiro A, Neto AP, Carvalho F, et al. Relevance of genomic imprinting in intrauterine human growth expression of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 imprinted genes. J Assist Reprod Genet 2014; 31:1361.

85 85. Guo L, Choufani S, Ferreira J, et al. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae. Dev Biol 2008; 320:79.

86 86. Koukoura O, Sifakis S, Zaravinos A, et al. Hypomethylation along with increased H19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta 2011; 32:51.

87 87. St‐Pierre J, Hivert M, Perron P, et al. IGF2 DNA methylation is a modulator of newborn's fetal growth and development. Epigenetics 2012; 7:1125.

88 88. Petre G, Lorès P, Sartelet H, et al. Genomic duplication in the 19q13. 42 imprinted region identified as a new genetic cause of intrauterine growth restriction. Clin Genet 2018; 94:575.

89 89. Lambertini L, Marsit CJ, Sharma P, et al. Imprinted gene expression in fetal growth and development. Placenta 2012; 33:480.

90 90. Ness RB, Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Obstet Gynecol 2006; 195:40.

91 91. Sibai B, Dekker G, Kupferminc M. Pre‐eclampsia. Lancet 2005; 365:785.

92 92. Côté A, Firoz T, Mattman A, et al. The 24‐hour urine collection: gold standard or historical practice? Obstet Gynecol 2008; 199:625.e1.

93 93. Magee LA, Pels A, Helewa M, et al. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive summary. J Obstet Gynaecol Canada 2014; 36:416.

94 94. Von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy 2003; 22:143.

95 95. Raymond D, Peterson E. A critical review of early‐onset and late‐onset preeclampsia. Obstet Gynecol Surv 2011; 66:497.

96 96. Benton SJ, Leavey K, Grynspan D, et al. The clinical heterogeneity of preeclampsia is related to both placental gene expression and placental histopathology. Obstet Gynecol 2018; 219:604e1.

97 97. Leavey K, Wilson SL, Bainbridge SA, et al. Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia. Clin Epigenet 2018; 10:28.

98 98. Leavey K, Bainbridge SA, Cox BJ. Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia. PloS One 2015; 10:e0116508.

99 99. Cox B, Leavey K, Nosi U, et al. Placental transcriptome in development and pathology: expression, function, and methods of analysis. Obstet Gynecol 2015; 213:S138.

100 100. Leung DN, Smith SC, To K, et al. Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2001; 184:1249.

101 101. Redman CG, Sargent I. Placental debris, oxidative stress and pre‐eclampsia. Placenta (Eastbourne) 2000; 21:597.

102 102. Rolnik D, O'gorman N, Fiolna M, et al. Maternal plasma cell‐free DNA in the prediction of pre‐eclampsia. Ultrasound Obstet Gynecol 2015; 45:106.

103 103. Taglauer E, Wilkins‐Haug L, Bianchi D. Review: cell‐free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 2014; 35:S64.

104 104. Demers S, Roberge S, Bujold E. Low‐dose aspirin for the prevention of adverse pregnancy outcomes in women with elevated alpha‐fetoprotein. J Mat Fetal Neonat Med 2015; 28:726.

105 105. Bujold E, Roberge S, Nicolaides KH. Low‐dose aspirin for prevention of adverse outcomes related to abnormal placentation. Prenat Diagn 2014; 34:642.

106 106. Grill S, Rusterholz C, Zanetti‐Dällenbach R, et al. Potential markers of preeclampsia–a review. Reprod Biol Endocrinol 2009; 7:70.

107 107. Vatten LJ, Eskild A, Nilsen TI, et al. Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia. Obstet Gynecol 2007; 196:239.e1.

108 108. Hawfield A, Freedman BI. Pre‐eclampsia: the pivotal role of the placenta in its pathophysiology and markers for early detection. Ther Adv Cardiovasc Dis 2009; 3:65.

109 109. Poon LC, Nicolaides KH. Early prediction of preeclampsia. Obstet Gynecol Int. 2014; 2014:297397.

110 110. Hui D, Okun N, Murphy K, et al. Combinations of maternal serum markers to predict preeclampsia, small for gestational age, and stillbirth: a systematic review. J Obstet Gynaecol Can 2012; 34:142.

111 111. Kuc S, Wortelboer EJ, van Rijn BB, et al. Evaluation of 7 serum biomarkers and uterine artery Doppler ultrasound for first‐trimester prediction of preeclampsia: a systematic review. Obstet Gynecol Surv. 2011; 66:225.

112 112. Heydanus R, Defoort P, Dhont M. Pre‐eclampsia and trisomy 13. Eur J Obstet Gynecol Reprod Biol 1995; 60:201.

113 113. Boyd P, Lindenbaum R, Redman C. Pre‐eclampsia and trisomy 13: a possible association. Lancet 1987; 330:425.

114 114. Zhang J, Christianson RE, Torfs CP. Fetal trisomy 21 and maternal preeclampsia. Epidemiology. 2004: 195.

115 115. Dotters‐Katz SK, Humphrey WM, Senz KL, et al. Trisomy 13 and the risk of gestational hypertensive disorders: a population‐based study. J Matern Fetal Neonatal Med 2018; 31:1951.

116 116. Pidoux G, Guibourdenche J, Frendo J, et al. Impact of trisomy 21 on human trophoblast behaviour and hormonal function. Placenta 2004; 25:S79.

117 117. Frendo J, Guibourdenche J, Pidoux G, et al. Trophoblast production of a weakly bioactive human chorionic gonadotropin in trisomy 21‐affected pregnancy. J Clin Endocrinol Metab 2004; 89:727.

118 118. Rizzo G, Capponi A, Cavicchioni O, et al. Placental vascularization measured by three‐dimensional power Doppler ultrasound at 11 to 13 6 weeks' gestation in normal and aneuploid fetuses. Ultrasound Obstet Gynecol 2007; 30:259.

119 119. Moses E, Fitzpatrick E, Freed K, et al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre‐eclampsia on 2q22. MHR: Basic Sci Reprod Med 2006; 12:505.

120 120. Roten LT, Johnson MP, Forsmo S, et al. Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre‐eclampsia in a large Norwegian population‐based study (the HUNT study). Eur J Hum Genet 2009; 17:250.

121 121. Oudejans CB, van Dijk M, Oosterkamp M, et al. Genetics of preeclampsia: paradigm shifts. Hum Genet 2007; 120:607.

122 122. van Dijk M, Mulders J, Poutsma A, et al. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 2005; 37:514.

123 123. Romanelli V, Belinchon A, Campos‐Barros A, et al. CDKN1C mutations in HELLP/preeclamptic mothers of Beckwith–Wiedemann syndrome (BWS) patients. Placenta 2009; 30:551.

124 124. McGinnis R, Steinthorsdottir V, Williams NO, et al. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat Genet 2017; 49:1255.

125 125. Gray KJ, Saxena R, Karumanchi SA. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Obstet Gynecol 2018; 218:211.

126 126. Fisher R, Hodges M. Genomic imprinting in gestational trophoblastic disease—a review. Placenta 2003; 24:S111.

127 127. Lage JM, Mark SD, Roberts DJ, et al. A flow cytometric study of 137 fresh hydropic placentas: correlation between types of hydatidiform moles and nuclear DNA ploidy. Obstet Gynecol 1992; 79:403.

128 128. Barton SC, Surani M, Norris M. Role of paternal and maternal genomes in mouse development. Nature 1984; 311:374.

129 129. Surani M, Barton SC, Norris M. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984; 308:548.

130 130. Abdalla EM, Hayward BE, Shamseddin A, et al. Recurrent hydatidiform mole: detection of two novel mutations in the NLRP7 gene in two Egyptian families. Eur J Obstet Gynecol Reprod Biol 2012; 164:211.

131 131. Wang CM, Dixon PH, Decordova S, et al. Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine‐rich region. J Med Genet 2009; 46:569.

132 132. Parry DA, Logan CV, Hayward BE, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet 2011; 89:451.

133 133. El‐Maarri O, Seoud M, Coullin P, et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet 2003; 12:1405.

134 134. Hayward BE, De Vos M, Talati N, et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat 2009; 30:E629.

135 135. Sanchez‐Delgado M, Martin‐Trujillo A, Tayama C, et al. Absence of maternal methylation in biparental hydatidiform moles from women with NLRP7 maternal‐effect mutations reveals widespread placenta‐specific imprinting. PLoS Genet 2015; 11:e1005644.

136 136. Redline RW, Hassold T, Zaragoza MV. Prevalence of the partial molar phenotype in triploidy of maternal and paternal origin. Hum Pathol 1998; 29:505.

137 137. McFadden DE, Pantzar JT. Placental pathology of triploidy. Hum Pathol 1996; 27:1018.

138 138. Kagan KO, Anderson JM, Anwandter G, et al. Screening for triploidy by the risk algorithms for trisomies 21, 18 and 13 at 11 weeks to 13 weeks and 6 days of gestation. Prenat Diagn 2008; 28:1209.

139 139. McFadden DE, Hulait G, Lockitch G, et al. Maternal serum screening in triploidy. Prenat Diagn 2002; 22:1113.

140 140. Barsoom MJ, Mcentaffer A, Fleming A, et al. Marked abnormal quadruple screen in a patient with severe preeclampsia at 20 weeks with a triploid fetus. J Matern Fetal Neonatal Med 2006; 19:443.

141 141. Gibson B, Muir‐Padilla J, Champeaux A, et al. Mesenchymal dysplasia of the placenta. Placenta 2004; 25:671.

142 142. Jauniaux E, Nicolaides K, Hustin J. Perinatal features associated with placental mesenchymal dysplasia. Placenta 1997; 18:701.

143 143. Matsui H, Iitsuka Y, Yamazawa K, et al. Placental mesenchymal dysplasia initially diagnosed as partial mole. Pathol Int 2003; 53:810.

144 144. Ohyama M, Kojyo T, Gotoda H, et al. Mesenchymal dysplasia of the placenta. Pathol Int 2000; 50:759.

145 145. Paradinas F, Sebire N, Fisher R, et al. Pseudo‐partial moles: placental stem vessel hydrops and the association with Beckwith–Wiedemann syndrome and complete moles. Histopathology 2001; 39:447.

146 146. Kaiser‐Rogers KA, McFadden DE, Livasy CA, et al. Androgenetic/biparental mosaicism causes placental mesenchymal dysplasia. J Med Genet 2006; 43:187.

147 147. Robinson WP, Lauzon JL, Innes AM, et al. Origin and outcome of pregnancies affected by androgenetic/biparental chimerism. Hum Reprod 2007; 22:1114.

148 148. Surti U, Hill LM, Dunn J, et al. Twin pregnancy with a chimeric androgenetic and biparental placenta in one twin displaying placental mesenchymal dysplasia phenotype. Prenat Diagn 2005; 25:1048.

149 149. Robinson W, Slee J, Smith N, et al. Placental mesenchymal dysplasia associated with fetal overgrowth and mosaic deletion of the maternal copy of 11p15. 5. Am J Med Genet A 2007; 143:1752.

150 150. Gogiel M, Begemann M, Spengler S, et al. Genome‐wide paternal uniparental disomy mosaicism in a woman with Beckwith–Wiedemann syndrome and ovarian steroid cell tumour. Eur J Hum Genet 2013; 21:788.

151 151. Ohtsuka Y, Higashimoto K, Sasaki K, et al. Autosomal recessive cystinuria caused by genome‐wide paternal uniparental isodisomy in a patient with Beckwith–Wiedemann syndrome. Clin Genet 2015; 88:261.

152 152. Inbar‐Feigenberg M, Choufani S, Cytrynbaum C, et al. Mosaicism for genome‐wide paternal uniparental disomy with features of multiple imprinting disorders: diagnostic and management issues. Am J Med Genet A 2013; 161:13.

153 153. Laberge JM, Patenaude Y, Desilets V, et al. Large hepatic mesenchymal hamartoma leading to mid‐trimester fetal demise. Fetal Diagn Ther 2005; 20:141.

154 154. Reed RC, Beischel L, Schoof J, et al. Androgenetic/biparental mosaicism in an infant with hepatic mesenchymal hamartoma and placental mesenchymal dysplasia. Pediatr Dev Pathol 2008; 11:377.

155 155. Lin J, Cole BL, Qin X, Zhang M, et al. Occult androgenetic‐biparental mosaicism and sporadic hepatic mesenchymal hamartoma. Pediatr Dev Pathol 2011; 14:360.

156 156. Kapur RP, Berry JE, Tsuchiya KD, et al. Activation of the Chromosome 19q microRNA cluster in sporadic and androgenetic‐biparental mosaicism–associated hepatic mesenchymal hamartoma. Pediatr Dev Pathol 2014; 17:75.

157 157. Bree AF, Siegfried E, Sotelo‐Avila C, et al. Infantile hemangiomas: speculation on placental trophoblastic origin. Arch Dermatol 2001; 137:573.

158 158. Itinteang T, Tan ST, Guthrie S, et al. A placental chorionic villous mesenchymal core cellular origin for infantile haemangioma. J Clin Pathol 2011; 64:870.

159 159. Sun Z, Yi C, Zhao H, et al. Infantile hemangioma is originated from placental trophoblast, fact or fiction? Med Hypotheses 2008; 71:444.

160 160. Schroeder DI, Blair JD, Lott P, et al. The human placenta methylome. Proc Natl Acad Sci U S A 2013; 110:6037.

161 161. Novakovic B, Saffery R. Placental pseudo‐malignancy from a DNA methylation perspective: unanswered questions and future directions. Front Genet 2013; 4.

162 162. Price EM, Cotton AM, Peñaherrera MS, et al. Different measures of “genome‐wide” DNA methylation exhibit unique properties in placental and somatic tissues. Epigenetics 2012; 7:652.

163 163. Cotton AM, Avila L, Penaherrera MS, et al. Inactive X chromosome‐specific reduction in placental DNA methylation. Hum Mol Genet 2009; 18:3544.

164 164. Blair JD, Yuen RK, Lim BK, et al. Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early‐onset pre‐eclampsia. Mol Hum Reprod 2013; 19:697.

165 165. Chu T, Bunce K, Shaw P, et al. Comprehensive analysis of preeclampsia‐associated DNA methylation in the placenta. PLoS One 2014; 9:e107318.

166 166. Anton L, Brown AG, Bartolomei MS, et al. Differential methylation of genes associated with cell adhesion in preeclamptic placentas. PLoS One 2014; 9:e100148.

167 167. Jia R, Zhang X, Hu P, et al. Screening for differential methylation status in human placenta in preeclampsia using a CpG island plus promoter microarray. Int J Mol Med 2012; 30:133.

168 168. Wilson SL, Leavey K, Cox BJ, et al. Mining DNA methylation alterations towards a classification of placental pathologies. Hum Mol Genet 2017; 27:135.

169 169. Lee Y, Choufani S, Weksberg R, et al. Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging (Albany NY) 2019; 11:4238.

170 170. Bourque D, Penaherrera M, Yuen R, et al. The utility of quantitative methylation assays at imprinted genes for the diagnosis of fetal and placental disorders. Clin Genet 2011; 79:169.

171 171. Monk D, Sanches R, Arnaud P, et al. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS‐IGF2 isoforms show differences between mouse and human. Hum Mol Genet 2006; 15:1259.

172 172. Yuen RK, Jiang R, Peñaherrera MS, et al. Genome‐wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin 2011; 4:10.

173 173. Penaherrera MS, Jiang R, Avila L, et al. Patterns of placental development evaluated by X chromosome inactivation profiling provide a basis to evaluate the origin of epigenetic variation. Hum Reprod 2012; 27:1745.

174 174. de Mello, Joana Carvalho Moreira, et al. Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele‐specific gene expression along the X chromosome. PloS One 2010; 5:e10947.

175 175. Yuen R, Robinson W. Review: a high capacity of the human placenta for genetic and epigenetic variation: implications for assessing pregnancy outcome. Placenta 2011; 32:S136.

176 176. Sibley CP, Brownbill P, Dilworth M, et al. Adaptation in placental nutrient supply to meet fetal growth demand: implications for programming. Placenta 2010; 31:S70.

177 177. Lunney L. Compensatory placental growth after restricted maternal nutrition in early pregnancy. Placenta 1998; 19:105.

178 178. Anblagan D, Jones NW, Costigan C, et al. Maternal smoking during pregnancy and fetal organ growth: a magnetic resonance imaging study. PLoS One 2013; 8:e67223.

179 179. Christianson RE. Gross differences observed in the placentas of smokers and nonsmokers. Am J Epidemiol 1979; 110:178.

180 180. Tegethoff M, Greene N, Olsen J, et al. Maternal psychosocial stress during pregnancy and placenta weight: evidence from a national cohort study. PLoS One 2010; 5:e14478.

181 181. Hindmarsh P, Geary M, Rodeck C, et al. Effect of early maternal iron stores on placental weight and structure. Lancet 2000; 356:719.

182 182. Liang L, Cookson WO. Grasping nettles: cellular heterogeneity and other confounders in epigenome‐wide association studies. Hum Mol Genet 2014; 23:R83.

183 183. Shallie PD, Naicker T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci 2019; 73:41.

184 184. Straughen JK, Misra DP, Divine G, et al. The association between placental histopathology and autism spectrum disorder. Placenta 2017; 57:183.

185 185. Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res 2019: 1.

186 186. Wheelock M, Hect J, Hernandez‐Andrade E, et al. Sex differences in functional connectivity during fetal brain development. Dev Cogn Neurosci 2019; 36:100632.

187 187. Ursini G, Punzi G, Chen Q, et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat Med 2018; 24:792.

188 188. Courtney JA, Cnota JF, Jones HN. The role of abnormal placentation in congenital heart disease; cause, correlate, or consequence? Front Physiol 2018; 9:1045.

Genetic Disorders and the Fetus

Подняться наверх