Читать книгу Liquid Biofuels - Группа авторов - Страница 52
References
Оглавление1. Moholkar, V.S., Choudhury, H.A., Singh, S., Khanna, S., Ranjan, A., Chakma, S., and Bhasarkar, J., Physical and chemical mechanisms of ultrasound in biofuel synthesis, in Production of Biofuels and Chemicals with Ultrasound (eds. Fang, Z., Smith, R.L.J., and Qi, X.), pp. 35–86. Springer, Dordrecht, 2015.
2. Abomohra, A.E.F., Elsayed, M., Esakkimuthu, S., El-Sheekh, M., and Hanelt, D., Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci., 81, 100868, 2020.
3. Chuah, L.F., Klemeš, J.J., Yusup, S., Bokhari, A., Akbar, M.M., A review of cleaner intensification technologies in biodiesel production. J. Clean. Prod., 146, 181–193, 2017.
4. Elbashir, N.O., Ahmed, W. Choudhury, H.A., Nasr, N.M., et al., GTL Derived Synthetic Fuels: Potentials and Challenges in Global Market, in Water-Food-Energy Nexus: Processes, Technologies and Challenges, CRC Press Taylor & Francis Group, 2016.
5. Basha, S.A., Gopal, K.R., Jebaraj, S., A review on biodiesel production, combustion, emissions and performance. Renew. Sustain. Energy Rev., 13 (6–7), 1628–1634, 2009.
6. Mahlia, T.M.I., Syazmi, Z.A.H.S., Mofijur, M., Abas, A.P., Bilad, M.R., Ong, H.C., Silitonga, A.S., Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev., 118, 109526, 2020.
7. Damanik, N., Ong, H.C., Tong, C.W., Mahlia, T.M.I., Silitonga, A.S., A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends. Environ. Sci. Pollut. Res., 25 (16), 15307–15325, 2018.
8. Knothe, G., and Razon, L.F., Biodiesel fuel. Prog. Energy Combust. Sci., 58, 36–59, 2017.
9. Malani, R.S., Sardar, H., Malviya, Y., Goyal, A., Moholkar, V.S., Ultrasound-Intensified Biodiesel Production from Mixed Nonedible Oil Feedstock Using Heterogeneous Acid Catalyst Supported on Rubber De-oiled Cake. Ind. Eng. Chem. Res., 57 (44), 14926–14938, 2018.
10. Malani, R.S., Choudhury, H.A., Moholkar, V.S., Waste biorefinery based on waste carbon sources: case study of biodiesel production using carbon based catalysts and mixed feedstocks of nonedible and waste oils, in Waste Biorefinery Volume-II (eds. Bhaskar, T., Pandey, A., Rene, E.R., and Tsang, D.C.W.), Elsevier B.V., pp. 337–378, 2020.
11. Badday, A.S., Abdullah, A.Z., Lee, K.T., Khayoon, M.S., Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development. Renew. Sustain. Energy Rev., 16 (7), 4574–4587, 2012.
12. Wang, T., Global biodiesel production by country 2018. https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/, 2019.
13. IEA, Biofuel Production Growth by Country. IEA Paris, https://www.iea.org/data-and-statistics/charts/bio, 2019.
14. Renewable energy policy Network 21st Century steering committee. Renewables 2014: global status report. REN 21, https://www.ren21.net/wp-content/uploads/2019/05/, 2014.
15. Abbaszaadeh, A., Ghobadian, B., Omidkhah, M.R., Najafi, G., Current biodiesel production technologies: A comparative review. Energy Convers. Manag., 63, 138–148, 2012.
16. Aransiola, E.F., Ojumu, T. V., Oyekola, O.O., Madzimbamuto, T.F., Ikhu–Omoregbe, D.I.O., A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 61, 276–297, 2014.
17. Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H.K.S., Mollahosseini, A., Hosseini, M., Soufiyan, M.M., Reactor technologies for biodiesel production and processing: a review. Prog. Energy Combust. Sci., 74, 239–303, 2019.
18. Choudhury, H.A., Malani, R.S., Moholkar, V.S., Acid catalyzed biodiesel synthesis from Jatropha oil: Mechanistic aspects of ultrasonic intensification. Chem. Eng. J., 231, 262–272, 2013.
19. Choudhury, H.A., Srivastava, P., Moholkar, V.S.,Single-step ultrasonic synthesis of biodiesel from crude Jatropha curcas oil. AIChE J., 60 (5), 1572–1581, 2014.
20. Choudhury, H.A., Goswami, P.P., Malani, R.S., Moholkar, V.S., Ultrasonic biodiesel synthesis from crude Jatropha curcas oil with heterogeneous base catalyst: Mechanistic insight and statistical optimization. Ultrason. Sonochem., 21 (3), 1050–1064, 2014.
21. Malani, R.S., Patil, S., Roy, K., Chakma, S., Goyal, A., Moholkar, V.S., Mechanistic analysis of ultrasound-assisted biodiesel synthesis with Cu2O catalyst and mixed oil feedstock using continuous (packed bed) and batch (slurry) reactors. Chem. Eng. Sci., 170, 743–755, 2017.
22. Malani, R.S., Shinde, V., Ayachit, S., Goyal, A., Moholkar, V.S., Ultrasound-assisted biodiesel production using heterogeneous base catalyst and mixed non-edible oils. Ultrason. Sonochem., 52, 232–243, 2019.
23. Maddikeri, G.L., Pandit, A.B., Gogate, P.R., Intensification approaches for biodiesel synthesis from waste cooking oil: A review. Ind. Eng. Chem. Res., 51 (45), 14610–14628, 2012.
24. Ranjan, A., Singh, S., Malani, R.S., Moholkar, V.S., Ultrasound-assisted bioalcohol synthesis: Review and analysis. RSC Adv., 6 (70), 65541–65562, 2016.
25. Malani, R.S., Goyal, A., Moholkar, V.S., Ultrasound-Assisted Biodiesel Synthesis: A Mechanistic Insight, in Biofuels (eds. Agrawal, A.K., Agarwal, R.A., Gupta, T., Gurjar, B.R., Springer, Singapore, pp. 103–135, 2017.
26. Ghayal, D., Pandit, A.B., Rathod, V.K., Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason. Sonochem., 20 (1), 322–328, 2013.
27. Moholkar, V.S., Sable, S.P., Pandit, A.B., Mapping the cavitation intensity in an ultrasonic bath using the acoustic emission. AIChE J., 46 (4), 684–694, 2000.
28. Moholkar, V.S., and Pandit, A.B., Modeling of hydrodynamic cavitation reactors: A unified approach. Chem. Eng. Sci., 56 (21–22), 6295–6302, 2001.
29. Shah, Y.T., Pandit, A.B., Moholkar, V.S., Cavitation Reaction Engineering, Plenum Press, New York, 1999.
30. Suslick, K.S. Sonochemistry. Science (80-. ), 247 (4949), 1439–1445, 1990.
31. Leighton, T.G. The acoustic bubble, Academic Press, San Diego, 1994.
32. Mason, T.J., and Lorimer, J.P. Applied sonochemistry: The uses of power ultrasound in chemistry and processing, Wiley–VCH, Coventry, 2002.
33. Lam, M.K., Lee, K.T., Mohamed, A.R., Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv., 28 (4), 500–518, 2010.
34. Ramachandran, K., Suganya, T., Gandhi, N.N., Renganathan, S., Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: a review. Renew. Sustain. Energy Rev., 22, 410–418, 2013.
35. Lerin, L.A., Loss, R.A., Remonatto, D., Zenevicz, M.C., Balen, M., Netto, V.O., Ninow, J.L., Trentin, C.M., Oliveira, J. V., de Oliveira, D., A review on lipase–catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst. Eng., 37 (12), 2381–2394, 2014.
36. Islam, A., Taufiq-Yap, Y.H., Chan, E.S., Moniruzzaman, M., Islam, S., Nabi, M.N., Advances in solid-catalytic and non-catalytic technologies for biodiesel production. Energy Convers. Manag., 88, 1200–1218, 2014.
37. Lourinho, G., and Brito, P. Advanced biodiesel production technologies: novel developments. Rev. Environ. Sci. Bio/Technology, 14 (2), 287–316, 2015.
38. Ho, W.W.S., Ng, H.K., Gan, S., Advances in ultrasound-assisted transesterification for biodiesel production. Appl. Therm. Eng., 100, 553–563, 2016.
39. Gude, V.G., and Martinez-Guerra, E., Green chemistry with process intensification for sustainable biodiesel production. Environ. Chem. Lett., 16 (2), 327–341, 2018.
40. Moghzi, F., and Soleimannejad, J. Sonochemical synthesis of a new nano–sized barium coordination polymer and its application as a heterogeneous catalyst towards sono-synthesis of biodiesel. Ultrason. Sonochem., 42, 193–200, 2018.
41. Varghese, R., Henry, J.P., Irudayaraj, J., Ultrasonication-assisted transesterification for biodiesel production by using heterogeneous ZnO nanocatalyst. Environ. Prog. Sustain. Energy, 37 (3), 1176–1182, 2018.
42. Korkut, I., and Bayramoglu, M., Selection of catalyst and reaction conditions for ultrasound assisted biodiesel production from canola oil. Renew. Energy, 116, 543–551, 2018.
43. Yadav, A..K., Khan, M.E., Pal, A., Singh, B., Ultrasonic-assisted optimization of biodiesel production from Karabi oil using heterogeneous catalyst. Biofuels, 9 (1), 101–112, 2018.
44. Vaz, L.M., Martins, M.I., Coutinho Filho, U., Cardoso, V.L., Reis, M.H., Ultrasound-assisted transesterification reactions for biodiesel production with sodium zirconate supported in polyvinyl alcohol as catalyst. Environ. Prog. Sustain. Energy, 36 (4), 1262–1267, 2017.
45. Jookjantra, K., Wongwuttanasatian, T., Optimisation of biodiesel production from refined palm oil with heterogeneous CaO catalyst using pulse ultrasonic waves under a vacuum condition. Energy Convers. Manag., 154, 1–10, 2017.
46. Korkut, I., Bayramoglu, M., Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel, 180, 624–629, 2016.
47. Poosumas, J., Ngaosuwan, K., Quitain, A.T., Assabumrungrat, S., Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst. Energy Convers. Manag., 120, 62–70, 2016.
48. Anuar, M.R., and Abdullah, A.Z. Ultrasound-assisted biodiesel production from waste cooking oil using hydrotalcite prepared by combustion method as catalyst. Appl. Catal. A Gen., 514, 214–223, 2016.
49. Xiang, Y., Wang, L., Jiao, Y., Ultrasound strengthened biodiesel production from waste cooking oil using modified coal fly ash as catalyst. J. Environ. Chem. Eng., 4 (1), 818–824, 2016.
50. Sarve, A.N., Varma, M.N., Sonawane, S.S., Ultrasound assisted two-stage biodiesel synthesis from non-edible Schleichera triguga oil using heterogeneous catalyst: Kinetics and thermodynamic analysis. Ultrason. Sonochem., 29, 288–298, 2016.
51. Saha, R., and Goud, V.V., Ultrasound assisted transesterification of high free fatty acids karanja oil using heterogeneous base catalysts. Biomass Convers. Biorefinery, 5 (2), 195–207, 2015.
52. Mootabadi, H., and Abdullah, A.Z., Response Surface Methodology for Simulation of Ultrasonic-assisted Biodiesel Production Catalyzed by SrO/Al2O3 Catalyst. Energy Sources, Part A Recover. Util. Environ. Eff., 37 (16), 1747–1755, 2015.
53. Gupta, A.R., Yadav, S.V., Rathod, V.K., Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel, 158, 800–806, 2015.
54. Ho, W.W.S., Ng, H.K., Gan, S., Chan, W.L., Ultrasound-assisted transesterification of refined and crude palm oils using heterogeneous palm oil mill fly ash supported calcium oxide catalyst. Energy Sci. Eng., 3 (3), 257–269, 2015.
55. Zhang, F., Fang, Z., Wang, Y.T., Biodiesel production directly from oils with high acid value by magnetic Na2SiO3@ Fe3O4/C catalyst and ultrasound. Fuel, 150, 370–377, 2015.
56. Shahraki, H., Entezari, M.H., Goharshadi, E.K., Sono-synthesis of biodiesel from soybean oil by KF/γ–Al2O3 as a nano-solid-base catalyst. Ultrason. Sonochem., 23, 266–274, 2015.
57. Martinez-Guerra, E., and Gude, V.G., Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations. Energy Convers. Manag., 88, 633–640, 2014.
58. Chen, G., Shan, R., Shi, J., Yan, B., Ultrasonic-assisted production of biodiesel from transesterification of palm oil over ostrich eggshell–derived CaO catalysts. Bioresour. Technol., 171, 428–432, 2014).
59. Takase, M., Zhang, M., Feng, W., Chen, Y., Zhao, T., Cobbina, S.J., Yang, L., Wu, X., Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel. Energy Convers. Manag., 80, 117–125, 2014.
60. Sivakumar, P., Sankaranarayanan, S., Renganathan, S., Studies on sono–chemical biodiesel production using smoke deposited nano MgO catalyst. Bull. Chem. React. Eng. Catal., 8 (2), 89–96, 2013.
61. Choudhury, H.A., Chakma, S., Moholkar, V.S., Mechanistic insight into sonochemical biodiesel synthesis using heterogeneous base catalyst. Ultrason. Sonochem., 21 (1), 169–181, 2014.
62. Peña-Rodríguez, R., Márquez-López, E., Guerrero, A., Chiñas, L.E., Hernández-González, D.F., Rivera, J.M., Hydrothermal synthesis of cobalt (II) 3D metal–organic framework acid catalyst applied in the transesterification process of vegetable oil. Mater. Lett., 217, 117–119, 2018.
63. Asif, S., Ahmad, M., Bokhari, A., Chuah, L.F., Klemeš, J.J., Akbar, M.M., Sultana, S., Yusup, S., Methyl ester synthesis of Pistacia khinjuk seed oil by ultrasonic-assisted cavitation system. Ind. Crops Prod., 108, 336–347, 2017.
64. Nikseresht, A., Daniyali, A., Ali-Mohammadi, M., Afzalinia, A., Mirzaie, A., Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem., 37, 203–207, 2017.
65. Dehghani, S., and Haghighi, M., Sono-sulfated zirconia nanocatalyst supported on MCM–41 for biodiesel production from sunflower oil: influence of ultrasound irradiation power on catalytic properties and performance. Ultrason. Sonochem., 35, 142–151, 2017.
66. Hajamini, Z., Sobati, M.A., Shahhosseini, S., Ghobadian, B., Waste fish oil (WFO) esterification catalyzed by sulfonated activated carbon under ultrasound irradiation. Appl. Therm. Eng., 94, 141–150, 2016.
67. Maneechakr, P., Samerjit, J., Uppakarnrod, S., Karnjanakom, S., Experimental design and kinetic study of ultrasonic assisted transesterification of waste cooking oil over sulfonated carbon catalyst derived from cyclodextrin. J. Ind. Eng. Chem., 32, 128–136, 2015.
68. Maneechakr, P., Samerjit, J., Karnjanakom, S., Ultrasonic-assisted biodiesel production from waste cooking oil over novel sulfonic functionalized carbon spheres derived from cyclodextrin via one-step: a way to produce biodiesel at short reaction time. RSC Adv., 5 (68), 55252–55261, 2015.
69. Gaikwad, N.D., Gogate, P.R., Synthesis and application of carbon based heterogeneous catalysts for ultrasound assisted biodiesel production. Green Process. Synth., 4 (1), 17–30, 2015.
70. Pukale, D.D., Maddikeri, G.L., Gogate, P.R., Pandit, A.B., Pratap, A.P., Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst. Ultrason. Sonochem., 22, 278–286, 2015.
71. Badday, A.S., Abdullah, A.Z., Lee, K.T., Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system. Renew. Energy, 62, 10–17, 2014.
72. Badday, A.S., Abdullah, A.Z., Lee, K.T., Ultrasound-assisted transesterification of crude Jatropha oil using cesium doped heteropolyacid catalyst: Interactions between process variables. Energy, 60, 283–291, 2013.
73. Malani, R.S., Umriwad, S.B., Kumar, K., Goyal, A., Moholkar, V.S., Ultrasound-assisted enzymatic biodiesel production using blended feedstock of non-edible oils: Kinetic analysis. Energy Convers. Manag., 188, 142–150, 2019.
74. Poppe, J.K., Matte, C.R., Fernandez-Lafuente, R., Rodrigues, R.C., Ayub, M.A.Z. Transesterification of waste frying oil and soybean oil by combilipases under ultrasound–assisted reactions. Appl. Biochem. Biotechnol., 186 (3), 576–589, 2018.
75. Santin, C.M., Michelin, S., Scherer, R.P., Valério, A., di Luccio, M., Oliveira, D., Oliveira, J. V., Comparison of macauba and soybean oils as substrates for the enzymatic biodiesel production in ultrasound–assisted system. Ultrason. Sonochem., 35, 525–528, 2017.
76. Bhangu, S.K., Gupta, S., Ashokkumar, M., Ultrasonic enhancement of lipase–catalysed transesterification for biodiesel synthesis. Ultrason. Sonochem., 34, 305–309, 2017.
77. Adewale, P., Dumont, M.J., Ngadi, M., Enzyme-catalyzed synthesis and kinetics of ultrasonic assisted methanolysis of waste lard for biodiesel production. Chem. Eng. J., 284, 158–165, 2016.
78. Adewale, P., Dumont, M.J., Ngadi, M., Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow. Ultrason. Sonochem., 27, 1–9, 2015.
79. Subhedar, P.B., Botelho, C., Ribeiro, A., Castro, R., Pereira, M.A., Gogate, P.R., Cavaco-Paulo, A., Ultrasound intensification suppresses the need of methanol excess during the biodiesel production with Lipozyme TL–IM. Ultrason. Sonochem., 27, 530–535, 2015.
80. Michelin, S., Penha, F.M., Sychoski, M.M., Scherer, R.P., Treichel, H., Valério, A., Di Luccio, M., de Oliveira, D., Oliveira, J. V., Kinetics of ultrasound–assisted enzymatic biodiesel production from Macauba coconut oil. Renew. Energy, 76, 388–393, 2015.
81. Trentin, C.M., Popiolki, A.S., Batistella, L., Dalla Rosa, C., Treichel, H., de Oliveira, D., Oliveira, J. V., Enzyme-catalyzed production of biodiesel by ultrasound-assisted ethanolysis of soybean oil in solvent-free system. Bioprocess Biosyst. Eng., 38 (3), 437–448, 2015.
82. Karimi, M., Keyhani, A., Akram, A., Rahman, M., Jenkins, B., Stroeve, P., Hybrid response surface methodology-genetic algorithm optimization of ultrasound–assisted transesterification of waste oil catalysed by immobilized lipase on mesoporous silica/iron oxide magnetic core-shell nanoparticles. Environ. Technol., 34 (13–14), 2201–2211, 2013.
83. Batistella, L., Lerin, L.A., Brugnerotto, P., Danielli, A.J., Trentin, C.M., Popiolski, A., Treichel, H., Oliveira, J. V., de Oliveira, D., Ultrasound-assisted lipase-catalyzed transesterification of soybean oil in organic solvent system. Ultrason. Sonochem., 19 (3), 452–458, 2012.
84. Kumar, G., Kumar, D., Johari, R., Singh, C., Enzymatic transesterification of Jatropha curcas oil assisted by ultrasonication. Ultrason. Sonochemistry, 18 (5), 923–927, 2011.
85. Yu, D., Tian, L., Wu, H., Wang, S., Wang, Y., Ma, D., Fang, X., Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochem., 45 (4), 519–525, 2010.
86. Gogate, P.R., Sutkar, V.S., Pandit, A.B., Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chem. Eng. J., 166 (3), 1066–1082, 2011.
87. Gogate, P.R., Shirgaonkar, I.Z., Sivakumar, M., Senthilkumar, P., Vichare, N.P., Pandit, A.B., Cavitation reactors: Efficiency assessment using a model reaction. AIChE J., 47 (11), 2526–2538, 2001.
88. Panda, D., Saharan, V.K., Manickam, S., Controlled Hydrodynamic Cavitation: A Review of Recent Advances and Perspectives for Greener Processing. Processes, 8, 220, 2020.
89. Gogate, P.R., Tatake, P.A., Kanthale, P.M., Pandit, A.B., Mapping of sonochemical reactors: Review, analysis, and experimental verification. AIChE J., 48 (7), 1542–1560, 2002.
90. Sharma, A., Gogate, P.R., Mahulkar, A., Pandit, A.B., Modeling of hydrodynamic cavitation reactors based on orifice plates considering hydrodynamics and chemical reactions occurring in bubble. Chem. Eng. J., 143 (1–3), 201–209, 2008.
91. Patil, A., Baral, S.S., Dhanke, P., Kore, V., Biodiesel production using prepared novel surface functionalised TiO2 nano-catalyst in hydrodynamic cavitation reactor. Mater. Today Proc., 27 (1), 198–203, 2020.
92. Khan, I.A., Prasad, N., Pal, A., Yadav, A.K., Efficient production of biodiesel from Cannabis sativa oil using intensified transesterification (hydrodynamic cavitation) method. Energy Sources, Part A Recover. Util. Environ. Eff., 1–10, 2019.
93. Bargole, S., George, S., Saharan, V.K., Improved rate of transesterification reaction in biodiesel synthesis using hydrodynamic cavitating devices of high throat perimeter to flow area ratios. Chem. Eng. Process. Intensif., 139, 1–13, 2019.
94. Chitsaz, H., Omidkhah, M., Ghobadian, B., Ardjmand, M., Optimization of hydrodynamic cavitation process of biodiesel production by response surface methodology. J. Environ. Chem. Eng., 6 (2), 2262–2268, 2018.
95. Kolhe, N.S., Gupta, A.R., Rathod, V.K., Production and purification of biodiesel produced from used frying oil using hydrodynamic cavitation. Resour. Technol., 3 (2), 198–203, 2017.
96. Bokhari, A., Chuah, L.F., Yusup, S., Klemeš, J.J., Akbar, M.M., Kamil, R.N.M., Cleaner production of rubber seed oil methyl ester using a hydrodynamic cavitation: optimisation and parametric study. J. Clean. Prod., 136, 31–41, 2016.
97. Mohod, A. V., Gogate, P.R., Viel, G., Firmino, P., Giudici, R., Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer. Chem. Eng. J., 316, 751–757, 2017.
98. Chuah, L.F., Yusup, S., Abd Aziz, A.R., Bokhari, A., Abdullah, M.Z., Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor. J. Clean. Prod., 112, 4505–4514, 2016.
99. Chuah, L.F., Yusup, S., Abd Aziz, A.R., Bokhari, A., Klemeš, J.J., Abdullah, M.Z., Intensification of biodiesel synthesis from waste cooking oil (Palm Olein) in a Hydrodynamic Cavitation Reactor: Effect of operating parameters on methyl ester conversion. Chem. Eng. Process. Process Intensif., 95, 235–240, 2015.
100. Gole, V.L., Naveen, K.R., Gogate, P.R., Hydrodynamic cavitation as an efficient approach for intensification of synthesis of methyl esters from sustainable feedstock. Chem. Eng. Process. Process Intensif., 71, 70–76, 2013.
101. Pal, A., Verma, A., Kachhwaha, S.S., Maji, S. Biodiesel production through hydrodynamic cavitation and performance testing. Renew. Energy, 35 (3), 619–624, 2010.
102. Pawar, S.K., Mahulkar, A.V., Pandit, A.B., Roy, K., Moholkar, V.S., Sonochemical effect induced by hydrodynamic cavitation: Comparison of venturi/orifice flow geometries. AIChE J., 63 (10), 4705–4716, 2017.
103. Karthikeyan, M., Renganathan, S., Baskar, G., Production of biodiesel from waste cooking oil using MgMoO4–supported TiO2 as a heterogeneous catalyst. Energy Sources, Part A Recover. Util. Environ. Eff., 39 (21), 2053–2059, 2017.
104. Kanthale, P.M., Gogate, P.R., Pandit, A.B., Wilhelm, A.M., Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: Cluster approach. Ultrason. Sonochem., 12 (6), 441–452, 2005.
105. Keller, J.B., Miksis, M.J., Bubble oscillations of large amplitude. J. Acoust. Soc. Am., 68, 628–633, 1980.
106. Krishnan, S.J., Dwivedi, P., Moholkar, V.S., Numerical investigation into the chemistry induced by hydrodynamic cavitation. Ind. Eng. Chem. Res., 45, 1493–1504, 2006.
107. Dong, Z., Delacour, C., Carogher, K.M., Udepurkar, A.P., Kuhn, S., Continuous ultrasonic reactors: Design, mechanism and application. Materials (Basel), 13 (2), 344, 2020.
108. Delacour, C., Stephens, D., Lutz, C., Mettin, R., Kuhn, S., Design and characterization of a scaled-up ultrasonic flow reactor. Org. Process Res. Dev., 0–36, 2020.
109. Verhaagen, B., Liu, Y., Pérez, A.G., Castro-Hernandez, E., Fernandez Rivas, D., Scaled-up sonochemical microreactor with increased efficiency and reproducibility. ChemistrySelect, 1 (2), 136–139, 2016.
110. Jamshidi, R., Rossi, D., Saffari, N., Gavriilidis, A., Mazzei, L., Investigation of the Effect of Ultrasound Parameters on Continuous Sonocrystallization in a Millifluidic Device. Cryst. Growth Des., 16 (8), 4607–4619, 2016.
111. Johansson, O., Lofqvist, T., Pamidi, T.R.K. Design of high-intensity ultrasound reactor. IEEE Int. Ultrason. Symp. IUS, 2017.
112. Bashir, T.A., Soni, A.G., Mahulkar, A. V., Pandit, A.B. The CFD driven optimisation of a modified venturi for cavitational activity. Can. J. Chem. Eng., 89 (6), 1366–1375, 2011.
113. Prabhu, A. V., Gogate, P.R., Pandit, A.B. Optimization of multiple-frequency sonochemical reactors. Chem. Eng. Sci., 59 (22–23), 4991–4998, 2004.
114. Gogate, P.R., Mujumdar, S., Pandit, A.B., Large-scale sonochemical reactors for process intensification: Design and experimental validation. J. Chem. Technol. Biotechnol., 78 (6), 685–693, 2003.
115. Moholkar, V.S., Mechanistic optimization of a dual frequency sonochemical reactor. Chem. Eng. Sci., 64 (24), 5255–5267, 2009.
116. Kumar, A., Gogate, P.R., Pandit, A.B., Mapping the efficacy of new designs for large scale sonochemical reactors. Ultrason. Sonochem., 14 (5), 538–544, 2007.
117. Kanthale, P.M., Gogate, P.R., Pandit, A.B, Modeling aspects of dual frequency sonochemical reactors. Chem. Eng. J., 127 (1–3), 71–79, 2007.
118. Gogate, P.R., Pandit, A.B., Sonochemical reactors: Scale up aspects. Ultrason. Sonochem., 11 (3–4), 105–117, 2004.
119. He, B., and Van Gerpen, J.H., Application of ultrasonication in transesterification processes for biodiesel production. Biofuels, 3 (4), 479–488, 2012.
120. Maddikeri, G.L., Gogate, P.R., Pandit, A.B., Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel, 137, 285–292, 2014.
121. Manickam, S., Arigela, V.N.D., Gogate, P.R. Intensification of synthesis of biodiesel from palm oil using multiple frequency ultrasonic flow cell. Fuel Process. Technol., 128, 388–393, 2014.
122. Murillo, G., He, Y., Yan, Y., Sun, J., Bartocci, P., Ali, S.S., Fantozzi, F., Scaled-up biodiesel synthesis from Chinese Tallow Kernel oil catalyzed by Burkholderia cepacia lipase through ultrasonic assisted technology: A non-edible and alternative source of bio energy. Ultrason. Sonochem., 58 (May), 104658, 2019.
*Corresponding author: hanif.choudhury@qatar.tamu.edu