Читать книгу Applied Water Science - Группа авторов - Страница 20

References

Оглавление

1. Feng, C.-H., Jiang, S.-R., Micro-scale quantitation of ten phthalate esters in water samples and cosmetics using capillary liquid chromatography coupled to UV detection: effective strategies to reduce the production of organic waste. Microchim. Acta, 177, 167, 2012.

2. Rahman, M., Brazel, C.S., The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci., 29, 1223, 2004.

3. Ceresana. Market study: Plasticizers (5th edition), 2019.

4. Net, S., Sempéré, R., Delmont, A., Paluselli, A., Ouddane, B., Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol., 49, 4019, 2015.

5. Gao, D., Li, Z., Wang, H., Liang, H., An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure. Sci. Total Environ., 645, 1400, 2018.

6. Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P., Duflos, G., Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere, 182, 781, 2017.

7. Ding, M., Kang, Q., Zhang, S., Zhao, F., Mu, D., Zhang, H., Yang, M., Hu, J., Contribution of phthalates and phthalate monoesters from drinking water to daily intakes for the general population. Chemosphere, 229, 125, 2019.

8. Benjamin, S., Masai, E., Kamimura, N., Takahashi, K., Anderson, R.C., Faisal, P.A., Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater., 340, 360, 2017.

9. Arcadi, F.A., Costa, C., Imperatore, C., Marchese, A., Rapisarda, A., Salemi, M., Trimarchi, G.R., Costa, G., Oral toxicity of bis(2-ethylhexyl) phthalate during pregnancy and suckling in the long–Evans rat. Food Chem. Toxicol., 36, 963, 1998.

10. Latini, G., De Felice, C., Verrotti, A., Plasticizers, infant nutrition and reproductive health. Reprod. Toxicol., 19, 27, 2004.

11. Benson, R., Hazard to the developing male reproductive system from cumulative exposure to phthalate esters—dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate. Regul. Toxicol. Pharmacol., 53, 90, 2009.

12. Lhuguenot, J.-C., Mitchell, A.M., Milner, G., Lock, E.A., Elcombe, C.R., The metabolism of di(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) in rats: In vivo and in vitro dose and time dependency of metabolism. Toxicol. Appl. Pharmacol., 80, 11, 1985.

13. Jonsson, S., Ejlertsson, J., Ledin, A., Mersiowsky, I., Svensson, B.H., Monoand diesters from o-phthalic acid in leachates from different European landfills. Water Res., 37, 609, 2003.

14. Jornet-Martínez, N., Muñoz-Ortuño, M., Moliner-Martínez, Y., Herráez-Hernández, R., Campíns-Falcó, P., On-line in-tube solid phase microextraction-capillary liquid chromatography method for monitoring degradation products of di-(2-ethylhexyl) phthalate in waters. J. Chromatogr. A, 1347, 157, 2014.

15. Commission of the European Communities. Communication from the Commission to the Council and the European Parliament on the implementation of the community strategy for endocrine disrupters—a range of substances suspected of interfering with the hormone systems of humans and wildlife, COM1999, Brussels, 1999.

16. International Agency for Research on Cancer. Agents Classified by the IARC Monographs, Volumes 1–123, 2018.

17. US Environmental Protection Agency. National Primary Drinking Water Regulations, Federal register, Part 12, 40 CFR Part 141, 1991.

18. Guidelines for Drinking-Water Quality, third ed. World Health Organization, Volume 1, 2008.

19. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off. J. Eur. Union, L 348, 84, 2008.

20. Amanzadeh, H., Yamini, Y., Moradi, M., Asl, Y.A., Determination of phthalate esters in drinking water and edible vegetable oil samples by headspace solid phase microextraction using graphene/polyvinylchloride nanocomposite coated fiber coupled to gas chromatography-flame ionization detector. J. Chromatogr. A, 1465, 38, 2016.

21. Cao, X.-L., Determination of phthalates and adipate in bottled water by headspace solid-phase microextraction and gas chromatography/mass spectrometry. J. Chromatogr. A, 1178, 231, 2008.

22. González-Sálamo, J., Socas-Rodríguez, B., Hernández-Borges, J., Rodríguez-Delgado, M.Á., Determination of phthalic acid esters in water samples using core-shell poly(dopamine) magnetic nanoparticles and gas chromatography tandem mass spectrometry. J. Chromatogr. A, 1530, 35, 2017.

23. Wang, X., Feng, J., Tian, Y., Li, C., Ji, X., Luo, C., Sun, M., Melamine-formaldehyde aerogel functionalized with polydopamine as in-tube solid-phase microextraction coating for the determination of phthalate esters. Talanta, 199, 317, 2019.

24. Zhou, Q., Fang, Z., Liao, X., Determination of phthalate esters from environmental water samples by micro-solid-phase extraction using TiO2 nanotube arrays before high-performance liquid chromatography. J. Sep. Sci., 38, 2526, 2015.

25. González-Sálamo, J., González-Curbelo, M.Á., Hernández-Borges, J., Rodríguez-Delgado, M.Á., Use of Basolite® F300 metal-organic framework for the dispersive solid-phase extraction of phthalic acid esters from water samples prior to LC-MS determination. Talanta, 195, 236, 2019.

26. Wang, W., Wu, Q., Zang, X., Wang, C., Wang, Z., Extraction of phthalate esters in environmental water samples using layered-carbon magnetic hybrid material as adsorbent followed by their determination with HPLC. Bull. Korean Chem. Soc., 33, 3311, 2012.

27. Hadjmohammadi, M.R., Ranjbari, E., Utilization of homogeneous liquid–liquid extraction followed by HPLC-UV as a sensitive method for the extraction and determination of phthalate esters in environmental water samples. Int. J. Environ. Anal. Chem., 92, 1312, 2012.

28. Polo, M., Llompart, M., Garcia-Jares, C., Cela, R., Multivariate optimization of a solid-phase microextraction method for the analysis of phthalate esters in environmental waters. J. Chromatogr. A, 1072, 63, 2005.

29. González-Sálamo, J., Socas-Rodríguez, B., Hernández-Borges, J. Analytical methods for the determination of phthalates in food. Curr. Opin. Food Sci., 22, 122, 2018.

30. González-Sálamo, J., González-Curbelo, M.Á., Socas-Rodríguez, B., Hernández-Borges, J., Rodríguez-Delgado, M.Á., Determination of phthalic acid esters in water samples by hollow fiber liquid-phase microextraction prior to gas chromatography tandem mass spectrometry. Chemosphere, 201, 254, 2018.

31. Lv, X., Hao, Y., Jia, Q., Preconcentration procedures for phthalate esters combined with chromatographic analysis. J. Chromatogr. Sci., 51, 632, 2013.

32. Tsochatzis, E.D., Tzimou-Tsitouridou, R., Gika, H.G., Analytical methodologies for the assessment of phthalate exposure in humans. Crit. Rev. Anal. Chem., 47, 279, 2017.

33. Lord, H., Pawliszyn, J., Microextraction of drugs. J. Chromatogr. A, 902, 17, 2000.

34. Sajid, M., Płotka-Wasylka, J., Combined extraction and microextraction techniques: Recent trends and future perspectives. TrAC Trends Anal. Chem., 103, 74, 2018.

35. González-Sálamo, J., Socas-Rodríguez, B., Hernández-Borges, J., Rodríguez-Delgado, M.Á., Nanomaterials as sorbents for food sample analysis. TrAC Trends Anal. Chem., 85, 203, 2016.

36. Socas-Rodríguez, B., González-Sálamo, J., Hernández-Borges, J., Rodríguez- Delgado, M.Á., Recent applications of nanomaterials in food safety. TrAC Trends Anal. Chem., 96, 172, 2017.

37. González-Sálamo, J., Varela-Martínez, D.A., Cairós, C., González-Curbelo, M.Á., Hernández-Borges, J., Nanomaterials have come to stay: An overview of their use as sorbents in sample preparation. LG-GC North Am., 37, 22, 2019.

38. Cousins, I.T., Mackay, D., Parkerton, T.F., Physical-chemical properties and evaluative fate modelling of phthalate esters, in: BT - Series anthropogenic compounds: Phtalate esters, C.A. Staples (Ed.), pp. 57–84, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

39. Banitaba, M.H., Davarani, S.S.H., Pourahadi, A., Solid-phase microextraction of phthalate esters from aqueous media by electrophoretically deposited TiO2 nanoparticles on a stainless steel fiber. J. Chromatogr. A, 1283, 1, 2013.

40. Asadollahzadeh, H., Noroozian, E., Maghsoudi, S., Solid-phase microextraction of phthalate esters from aqueous media by electrochemically deposited carbon nanotube/polypyrrole composite on a stainless steel fiber. Anal. Chim. Acta, 669, 32, 2010.

41. Song, X.-L., Chen, Y., Yuan, J.-P., Qin, Y.-J., Zhao, R.-S., Wang, X., Carbon nanotube composite microspheres as a highly efficient solid-phase microextraction coating for sensitive determination of phthalate acid esters in water samples. J. Chromatogr. A, 1468, 17, 2016.

42. Behzadi, M., Noroozian, E., Mirzaei, M., Electropolymerization of carbon nanotubes/poly-ortho-aminophenol nanocomposite on a stainless steel fiber for the solid-phase microextraction of phthalate esters. RSC Adv., 4, 50426, 2014.

43. Zhang, M., Huang, J., Zeng, J., Zhang, C., Silicon dioxide–poly(dimethylsiloxane) with a bilayer structure, incorporating multi-walled carbon nanotubes, supported on stainless steel wire as a solid-phase microextraction fiber for the determination of trace phthalate esters in drinking water sample. RSC Adv., 4, 12313, 2014.

44. Eskandarpour, N., Sereshti, H., Electrospun polycaprolactam-manganese oxide fiber for headspace-solid phase microextraction of phthalate esters in water samples. Chemosphere, 191, 36, 2018.

45. He, J., Lv, R., Zhan, H., Wang, H., Cheng, J., Lu, K., Wang, F., Preparation and evaluation of molecularly imprinted solid-phase micro-extraction fibers for selective extraction of phthalates in an aqueous sample. Anal. Chim. Acta, 674, 53, 2010.

46. Guo, H., Song, N., Wang, D., Ma, J., Jia, Q., A modulation approach for covalent organic frameworks: Application to solid phase microextraction of phthalate esters. Talanta, 198, 277, 2019.

47. Zhao, R.-S., Liu, Y.-L., Zhou, J.-B., Chen, X.-F., Wang, X., Bamboo charcoal as a novel solid-phase microextraction coating material for enrichment and determination of eleven phthalate esters in environmental water samples. Anal. Bioanal. Chem., 405, 4993, 2013.

48. Herrera-Herrera, A., Asensio-Ramos, M., González Curbelo, M.Á., Hernández-Borges, J., Carbon nanotubes applications in solid-phase extraction, in: Carbon Nanotubes: Synthesis, Properties and Applications, A.K. Mishra (Ed.), pp. 1-42, Nova Science Publishers, 2013.

49. González-Curbelo, M.Á., Rodríguez-Delgado, M.Á., Hernández-Borges, J., Nuevas aportaciones en el tratamiento de muestra para el análisis de plaguici-das, Servicio de Publicaciones de la Universidad de La Laguna, 2015.

50. González-Sálamo, J., Herrera-Herrera, A. V, Fanali, C., Hernández-Borges, J., Magnetic nanoparticles for solid-phase extraction. LC GC Eur., 29, 180, 2016.

51. Ríos, Á., Zougagh, M., Recent advances in magnetic nanomaterials for improving analytical processes. TrAC Trends Anal. Chem., 84, 72, 2016.

52. Tashakkori, P., Erdem, P., Merdivan, M., Bozkurt, S.S., Determination of phthalate esters in water and coffee by solid-phase microextraction using vinyl terminated imidazolium based ionic liquid grafted on graphene oxide coatings. Chemistry Select, 4, 2307, 2019.

53. Socas-Rodríguez, B., González-Sálamo, J., Hernández-Borges, J., Chapter 2 Carbon Nanomaterials in Sample Preparation, in: Carbon-based Nanomaterials in Analytical Chemistry, C.D. García, A.G. Crevillén, A. Escarpa (Eds.), pp. 37–68, The Royal Society of Chemistry, 2019.

54. Liu, L., Zhang, J., Zhao, J., Liu, F., Mechanical properties of graphene oxides. Nanoscale, 4, 5910, 2012.

55. Singh, S.K., Savoy, A.W., Ionic liquids synthesis and applications: An overview. J. Mol. Liq., 297, 112038, 2020.

56. Anderson, J.L., Ding, J., Welton, T., Armstrong, D.W., Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc., 124, 14247, 2002.

57. Włoch, M., Datta, J., Chapter Two - Synthesis and polymerisation techniques of molecularly imprinted polymers, in: MIP Synthesis, Characteristics and Analytical Application, vol. 86, M. Marc (Ed.), pp. 17–40, Elsevier, 2019.

58. Kosheleva, R.I., Mitropoulos, A.C., Kyzas, G.Z., Chapter 7 - New trends in molecular imprinting techniques, in: Advanced Low-Cost Separation Techniques in Interface Science, vol. 30, G. Kyzas, A. Mitropoulos (Eds.), pp. 151–172, Elsevier, 2019.

59. Zaidi, S.A., Molecular imprinting polymers and their composites: a promising material for diverse applications. Biomater. Sci., 5, 388, 2017.

60. Costa Queiroz, M.E., Donizeti de Souza, I., Marchioni, C., Current advances and applications of in-tube solid-phase microextraction. TrAC Trends Anal. Chem., 111, 261, 2019.

61. Eisert, R., Pawliszyn, J., Automated In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Anal. Chem., 69, 3140, 1997.

62. Lirio, S., Fu, C.-W., Lin, J.-Y., Hsu, M.-J., Huang, H.-Y., Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents. Anal. Chim. Acta, 927, 55, 2016.

63. Baltussen, E., Sandra, P., David, F., Cramers, C., Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep., 11, 737, 1999.

64. Soares da Silva Burato, J., Vargas Medina, D.A., de Toffoli, A.L., Vasconcelos Soares Maciel, E., Mauro Lanças, F., Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci., 43, 202, 2020.

65. Prieto, A., Zuloaga, O., Usobiaga, A., Etxebarria, N., Fernández, L.A., Development of a stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry method for the simultaneous determination of several persistent organic pollutants in water samples. J. Chromatogr. A, 1174, 40, 2007.

66. Si, Q., Li, F., Gao, C., Wang, C., Wang, Z., Zhao, J., Detection of phthalate esters in seawater by stir bar sorptive extraction and gas chromatography–mass spectrometry. Mar. Pollut. Bull., 108, 163, 2016.

67. Socas-Rodríguez, B., Herrera-Herrera, A. V, Asensio-Ramos, M., Hernández-Borges, J., Dispersive solid-phase extraction. Anal. Sep. Sci., 1525, 2015.

68. Khezeli, T., Daneshfar, A., Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC Trends Anal. Chem., 89, 99, 2017.

69. Cheng, L., Pan, S., Ding, C., He, J., Wang, C., Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water. J. Chromatogr. A, 1511, 85, 2017.

70. González-Curbelo, M.Á., Asensio-Ramos, M., Herrera-Herrera, A. V, Hernández-Borges, J., Pesticide residue analysis in cereal-based baby foods using multi-walled carbon nanotubes dispersive solid-phase extraction. Anal. Bioanal. Chem., 404, 183, 2012.

71. González-Curbelo, M.Á., Herrera-Herrera, A. V, Hernández-Borges, J., Rodríguez-Delgado, M.Á., Analysis of pesticides residues in environmental water samples using multiwalled carbon nanotubes dispersive solid-phase extraction. J. Sep. Sci., 36, 556, 2013.

72. Wu, X., Hong, H., Liu, X., Guan, W., Meng, L., Ye, Y., Ma, Y., Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water. Sci. Total Environ., 444, 224, 2013.

73. Özer, E.T., Osman, B., Yazici, T., Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water. J. Chromatogr. A, 1500, 53, 2017.

74. Chen, X., Xin, L., Xu, Y., Liu, J., Li, Z., Wang, Y., Zhao, J., (2019) Polymer phase transition characteristics coupled with GC-MS for the determination of phthalate esters. J. Sep. Sci., 42, 3095, 2019.

75. Chen, X., Guo, Z., Wang, Y., Liu, Y., Xu, Y., Liu, J., Li, Z., Zhao, J., Temperature sensitive polymer-dispersive liquid–liquid microextraction with gas chromatography–mass spectrometry for the determination of phenols. J. Chromatogr. A, 1592, 183, 2019.

76. Jiao, Y., Fu, S., Ding, L., Gong, Q., Zhu, S., Wang, L., Li, H., Determination of trace leaching phthalate esters in water by magnetic solid phase extraction based on magnetic multi-walled carbon nanotubes followed by GC-MS/MS. Anal. Methods, 4, 2729, 2012.

77. Luo, Y.-B., Yu, Q.-W., Yuan, B.-F., Feng, Y.-Q., Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes. Talanta, 90, 123, 2012.

78. Wu, Q., Liu, M., Ma, X., Wang, W., Wang, C., Zang, X., Wang, Z., Extraction of phthalate esters from water and beverages using a graphene-based magnetic nanocomposite prior to their determination by HPLC. Microchim. Acta, 177, 23, 2012.

79. Ye, Q., Liu, L., Chen, Z., and Hong, L., Analysis of phthalate acid esters in environmental water by magnetic graphene solid phase extraction coupled with gas chromatography–mass spectrometry. J. Chromatogr. A, 1329, 24, 2014.

80. Jiménez-Skrzypek, G., González-Sálamo, J., Varela-Martínez, D.A., González-Curbelo, M.Á., Hernández-Borges, J., Analysis of phthalic acid esters in sea water and sea sand using polymer-coated magnetic nanoparticles as extraction sorbent. J. Chromatogr. A, 1611, 460620, 2019.

81. Zhao, H., Huang, M., Wu, J., Wang, L., He, H., Preparation of Fe3O4@PPy magnetic nanoparticles as solid-phase extraction sorbents for preconcentration and separation of phthalic acid esters in water by gas chromatography–mass spectrometry. J. Chromatogr. B, 1011, 33, 2016.

82. Liu, G., Su, P., Zhou, L., Yang, Y., Microwave-assisted preparation of poly(ionic liquids)-modified polystyrene magnetic nanospheres for phthalate esters extraction from beverages. J. Sep. Sci., 40, 2603, 2017.

83. Zhou, S., Song, N., Lv, X., Jia, Q., Preparation of carboxylatocalix[4]arene functionalized magnetic polyionic liquid hybrid material for the pre-concentration of phthalate esters. J. Chromatogr. A, 1565, 19, 2018.

84. Rocío-Bautista, P., González-Hernández, P., Pino, V., Pasán, J., Afonso, A.M., Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC Trends Anal. Chem., 90, 114, 2017.

85. Liu, X., Sun, Z., Chen, G., Zhang, W., Cai, Y., Kong, R., Wang, X., Suo, Y., You, J., Determination of phthalate esters in environmental water by magnetic Zeolitic Imidazolate Framework-8 solid-phase extraction coupled with high-performance liquid chromatography. J. Chromatogr. A, 1409, 46, 2015.

86. Dargahi, R., Ebrahimzadeh, H., Asgharinezhad, A.A., Hashemzadeh, A., Amini, M.M., Dispersive magnetic solid-phase extraction of phthalate esters from water samples and human plasma based on a nanosorbent composed of MIL-101(Cr) metal–organic framework and magnetite nanoparticles before their determination by GC–MS. J. Sep. Sci., 41, 948, 2018.

87. Wang, Y., Tong, Y., Xu, X., Zhang, L., Developed magnetic multiporous 3D N-Co@C/HCF as efficient sorbent for the extraction of five trace phthalate esters. Anal. Chim. Acta, 1054, 176, 2019.

88. Li, H., Cao, Z., Cao, X., Jiang, Z., Abd El-Aty, A.M., Qi, Y., Shao, H., Jin, F., Zheng, L., Wang, J., Magnetic solid-phase extraction using a mixture of two types of nanoparticles followed by gas chromatography–mass spectrometry for the determination of six phthalic acid esters in various water samples. RSC Adv., 8, 39641, 2018.

89. Abdel-Rehim, M., Microextraction by packed sorbent (MEPS): A tutorial. Anal. Chim. Acta, 701, 119, 2011.

90. Amiri, A., Chahkandi, M., Targhoo, A., Synthesis of nano-hydroxyapatite sorbent for microextraction in packed syringe of phthalate esters in water samples. Anal. Chim. Acta, 950, 64, 2017.

91. Olcer, Y.A., Tascon, M., Eroglu, A.E., Boyaci, E., Thin film microextraction: Towards faster and more sensitive microextraction. TrAC Trends Anal. Chem., 113, 93, 2019.

92. Reyes-Garcés, N., Gionfriddo, E., Gómez-Ríos, G.A., Alam, M.N., Boyaci, E., Bojko, B., Singh, V., Grandy, J., Pawliszyn, J., Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem., 90, 302, 2018.

93. Mehrani, Z., Ebrahimzadeh, H., Moradi, E., Poly m-aminophenol/nylon 6/graphene oxide electrospun nanofiber as an efficient sorbent for thin film microextraction of phthalate esters in water and milk solutions preserved in baby bottle. J. Chromatogr. A, 1600, 87, 2019.

94. Wang, T., Wang, J., Zhang, C., Yang, Z., Dai, X., Cheng, M., Hou, X., Metal–organic framework MIL-101(Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study. Analyst, 140, 5308, 2015.

95. Lee, M.-R., Lai, F.-Y., Dou, J., Lin, K.-L., Chung, L.-W., (2011) Determination of trace leaching phthalate esters in water and urine from plastic containers by solid-phase microextraction and gas chromatography–mass spectrometry. Anal. Lett., 44, 676, 2011.

96. Zhang, Z.-M., Zhang, H.-H., Li, J.-L., Yang, G.-P., Determination of Phthalic Acid Esters in Seawater and Sediment by Solid-phase Microextraction and Gas Chromatography-Mass Spectrometry. Chinese J. Anal. Chem., 45, 348, 2017.

* Corresponding author: jhborges@ull.edu.es

Applied Water Science

Подняться наверх