Читать книгу Polysaccharides - Группа авторов - Страница 95
References
Оглавление1. Dhargalkar, V.K. and Pereira, N., Seaweed: Promising plant of the millennium. Sci. Cult., 71, 60–66, 2005.
2. Margulis, L. and Chapman, M.J., Five kingdoms: An illustrated guide to the phyla of life on Earth, 3rd ed., Academic Press, Elsevier, San Diego, CA, 2009.
3. Evangelista, V., Frassanito, A.M., Passarelli, V., Barsanti, L., Gualtieri, P., Microspectroscopy of the photosynthetic compartment of algae. Photochem. Photobiol., 82, 4, 1039, 2006.
4. Melo, M.R.S., Feitosa, J.P.A., Freitas, A.L.P., De Paula, R.C.M., Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym., 49, 4, 491, 2002.
5. Hii, S.L., Lim, J., Ong, W.T., Wong, C.L., Agar from Malaysian red seaweed as potential material for synthesis of bioplastic film. J. Eng. Sci. Technol., 7, 1, 2016.
6. Rhein-Knudsen, N., Ale, M.T., Meyer, A.S., Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Mar. Drugs, 13, 6, 3340, 2015.
7. Aliste, A.J., Vieira, F.F., Del Mastro, N.L., Radiation effects on agar, alginates and carrageenans to be used as food additives. Radiat. Phys. Chem., 57, 3, 305, 2000.
8. Van de Velde, F., Knutsen, S.H., Usov, A.I., Rollema, H.S., Cerezo, A.S., 1H and 13C high resolution NMR spectroscopy of carrageenans: Application in research and industry. Trends Food Sci. Technol., 13, 3, 73, 2002.
9. Jol, C.N., Neiss, T.G., Penninkhof, B., Rudolph, B., De Ruiter, G.A., A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3, 6-anhydrogalactose. Anal. Biochem., 268, 2, 213, 1999.
10. Alba, K. and Kontogiorgos, V., Seaweed Polysaccharides (Agar, Alginate, Carrageenan), pp. 240– 250, University of Huddersfield, Huddersfield, United Kingdom, Encyclopedia of Food Chemistry, Elsevier, Amsterdam, Netherlands, 2018.
11. Rioux, L.E. and Turgeon, S.L., Seaweed carbohydrates, in: Seaweed sustainability, pp. 141–192, Academic Press, Elsevier, USA, 2015.
12. Bixler, H.J. and Porse, H., A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol., 23, 3, 321, 2011.
13. Meena, R., Prasad, K., Ganesan, M., Siddhanta, A.K., Superior quality agar from Gracilaria species (Gracilariales, Rhodophyta) collected from the Gulf of Mannar, India. J. Appl. Phycol., 20, 4, 397, 2008.
14. Marinho-Soriano, E. and Bourret, E., Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour. Technol., 90, 3, 329, 2003.
15. Freile-Pelegrın, Y. and Murano, E., Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour. Technol., 96, 3, 295, 2005.
16. Sousa, A.M., Alves, V.D., Morais, S., Delerue-Matos, C., Gonçalves, M.P., Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: Evaluation of a microwave-assisted process using response surface methodology. Bioresour. Technol., 101, 9, 3258, 2010.
17. Tanna, B. and Mishra, A., Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf., 18, 3, 817, 2019.
18. Pereira-Pacheco, F., Robledo, D., Rodríguez-Carvajal, L., Freile-Pelegrín, Y., Optimization of native agar extraction from Hydropuntia cornea from Yucatán, México. Bioresour. Technol., 98, 6, 1278, 2007.
19. Marinho-Soriano, E. and Bourret, E., Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresour. Technol., 96, 3, 379, 2005.
20. Romero, J.B., Villanueva, R.D., Montaño, M.N.E., Stability of agar in the seaweed Gracilaria eucheumatoides (Gracilariales, Rhodophyta) during postharvest storage. Bioresour. Technol., 99, 17, 8151, 2008.
21. Arvizu-Higuera, D.L., Rodríguez-Montesinos, Y.E., Murillo-Álvarez, J.I., Muñoz-Ochoa, M., Hernández-Carmona, G., Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla, in: Nineteenth International Seaweed Symposium, Springer, Dordrecht, pp. 65–69, 2007.
22. Oyieke, H.A., The yield, physical and chemical properties of agar gel from Gracilaria species (Gracilariales, Rhodophyta) of the Kenya Coast. Hydrobiologia, 260, 1, 613, 1993.
23. Kumar, V. and Fotedar, R., Agar extraction process for Gracilaria cliftonii. Carbohydr. Polym., 78, 4, 813, 2009.
24. Cardozo, K.H., Guaratini, T., Barros, M.P., Falcão, V.R., Tonon, A.P., Lopes, N.P. et al., Metabolites from algae with economical impact. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 146, 1–2, 60, 2007.
25. Hamed, I., Özogul, F., Özogul, Y., Regenstein, J.M., Marine bioactive compounds and their health benefits: A review. Compr. Rev. Food Sci. Food Saf., 14, 4, 446, 2015.
26. Kraan, S., Algal polysaccharides, novel applications and outlook, in: Carbohydrates— Comprehensive Studies on Glycobiology and Glycotechnology, pp. 489–582, IntechOpen, Rijeka, Croatia, 2012.
27. Chen, X.Q., Microwave-assisted extraction of polysaccharides from Solanum nigrum. J. Cent. South Univ. T., 12, 5, 556, 2005.
28. Holdt, S.L. and Kraan, S., Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol., 23, 3, 543, 2011.
29. Wijesekara, I., Pangestuti, R., Kim, S.K., Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym., 84, 1, 14, 2011.
30. Usman, A., Khalid, S., Usman, A., Hussain, Z., Wang, Y., Algal Polysaccharides, Novel Application, and Outlook, in: Algae Based Polymers, Blends, and Composites, pp. 115–153, 2017.
31. Lahaye, M., Developments on gelling algal galactans, their structure and physico-chemistry. J. Appl. Phycol., 13, 2, 173, 2001.
32. Campo, V.L., Kawano, D.F., da Silva Jr., D.B., Carvalho, I., Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym., 77, 2, 167, 2009.
33. Cunha, L. and Grenha, A., Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs, 14, 3, 42, 2016.
34. Li, L., Ni, R., Shao, Y., Mao, S., Carrageenan and its applications in drug delivery. Carbohydr. Polym., 103, 1, 2014.
35. Bui, T.N.T.V., Structure, Rheological Properties and Connectivity of Gels Formed by Carrageenan Extracted from Different Red Algae Species (Doctoral dissertation), University of Le Mans, Le Mans, France, 2019.
36. Hernandez-Carmona, G., Freile-Pelegrín, Y., Hernández-Garibay, E., Conventional and alternative technologies for the extraction of algal polysaccharides, in: Functional ingredients from algae for foods and nutraceuticals, pp. 475–516, Woodhead Publishing, United Kingdom, 2013.
37. Burey, P., Bhandari, B.R., Howes, T., Gidley, M.J., Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr., 48, 361, 2008.
38. Lee, J.Y., Park, H.J., Lee, C.Y., Choi, W.Y., Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT Food Sci. Technol., 36, 323, 2003.
39. Fabra, M.J., Hambleton, A., Talens, P., Debeaufort, F., Chiralt, A., Voilley, A., Influence of interactions on water and aroma permeabilities of ι-carrageenan–oleic acid–beeswax films used for flavour encapsulation. Carbohydr. Polym., 76, 325, 2009.
40. Cook, M.T., Tzortzis, G., Charalampopoulos, D., Khutoryanskiy, V.V., Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release, 162, 56, 2012.
41. Lupo, B., Maestro, A., Porras, M., Gutiérrez, J.M., González, C., Preparation of alginate micro-spheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocoll., 38, 56, 2014.
42. Reis, C.P., Neufeld, R.J., Vilela, S., Ribeiro, A.J., Veiga, F., Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J. Microencapsul., 23, 245, 2006.
43. Rojas-Graü, M.A., Raybaudi-Massilia, R.M., Soliva-Fortuny, R.C., Avena-Bustillos, R.J., McHugh, T.H., Martín-Belloso, O., Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol. Technol., 45, 2, 254, 2007.
44. Sipahi, R.E., Castell-Perez, M.E., Moreira, R.G., Gomes, C., Castillo, A., Improved multilayered antimicrobial alginate-based edible coating extends the shelf life of fresh-cut watermelon (Citrullus lanatus). LWT Food Sci. Technol., 51, 1, 9, 2013.
45. Robles-Sánchez, R.M., Rojas-Graü, M.A., Odriozola-Serrano, I., González-Aguilar, G., Martin-Belloso, O., Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT Food Sci. Technol., 50, 1, 240, 2013.
46. Jiang, T., Kim, Y.K., Singh, B., Kang, S.K., Choi, Y.J., Cho, C.S., Effect of microencapsulation of Lactobacillus plantarum 25 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. J. Nanosci., 13, 8, 5291, 2013.
47. Lee, K.Y. and Mooney, D.J., Alginate: Properties and biomedical applications. Prog. Polym. Sci., 37, 1, 106, 2012.
48. Helgerud, T., Gåserød, O., Fjæreide, T., Andersen, P.O., Larsen, C.K., Alginates, in: Food Stabilizers, Thickeners and Gelling Agents, pp. 50–72, Wiley-Blackwell, United Kingdom, 2010.
49. Draget, K.I., Skjåk-Bræk, G., Stokke, B.T., Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocoll., 20, 2–3, 170, 2006.
50. Mancini, F. and McHugh, T.H., Fruit–alginate interactions in novel restructured products. Food/Nahrung, 44, 3, 152, 2000.
51. Manjunatha, S.S. and Das Gupta, D.K., Instrumental textural characteristics of restructured carrot cubes. Int. J. Food Prop., 9, 3, 453, 2006.
52. Banerjee, A., Use of novel polysaccharides in textile printing, Doctoral dissertation, Colorado State University, Colorado, USA, 2013.
53. Katayama, H., Nishimura, T., Ochi, S., Tsuruta, Y., Yamazaki, Y., Shibata, K. et al., Sustained release liquid preparation using sodium alginate for eradication of Helicobacter pyroli. Biol. Pharm. Bull., 22, 1, 55, 1999.
54. Nishide, E., Anzai, H., Uchida, N., Effects of alginates on the ingestion and excretion of cholesterol in the rat. J. Appl. Phycol., 5, 2, 207, 1993.
55. Kimura, Y., Watanabe, K., Okuda, H., Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J. Ethnopharmacol., 54, 1, 47, 1996.
56. Li, B., Lu, F., Wei, X., Zhao, R., Fucoidan: Structure and bioactivity. Molecules, 13, 8, 1671, 2008.
57. Kylin, H., Zur Biochemie der Meeresalgen. Hoppe Seylers Z. Physiol. Chem., 83, 3, 171, 1913.
58. Percival, E.G.V., Ross, A.G., Fucoidin Part, I., The isolation and purification of fucoidin from brown seaweeds. J. Chem. Soc., 717–720, 1950.
59. Lunde, G., Heen, E., Oy, E., Uber fucoidin. H. Z. Physiol. Chem., 247, 189, 1937.
60. Ale, M.T., Mikkelsen, J.D., Meyer, A.S., Important determinants for fucoidan bioactivity: A critical review of structure–function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs, 9, 10, 2106, 2011.
61. Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., D’Incecco, A., Piccoli, A. et al., A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17, 5, 541, 2007.
62. Nagaoka, M., Shibata, H., Kimura-Takagi, I., Hashimoto, S., Kimura, K. et al., Structural study of fucoidan from Cladosiphon okamuranus Tokida. Glycoconj. J, 16, 1, 19, 1999.
63. Gupta, S. and Abu-Ghannam, N., Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol., 22, 6, 315, 2011.
64. Black, W.A.P., Dewar, E.T., Woodward, F.N., Manufacture of algal chemicals. IV.—Laboratoryscale isolation of fucoidin from brown marine algae. J. Sci. Food Agric., 3, 122, 1952.
65. Nishino, T., Nishioka, C., Ura, H., Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res., 255, 213, 1994.
66. Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydr. Res., 337, 719, 2002.
67. Bilan, M.I., Grachev, A.A., Shashkov, A.S., Nifantiev, N.E., Usov, A.I., Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr. Res., 341, 238, 2006.
68. Kitamura, K., Matsuo, M., Yasui, T., Fucoidan from brown seaweed Laminaria angustata var. longissima. Agric. Biol. Chem., 55, 2, 615, 1991.
69. Mian, J. and Percival, E., Carbohydrates of the brown seaweeds Himanthalia lorea and Bifurcaria bifurcata Part II. structural studies of the “fucans”. Carbohydr. Res., 26, 147, 1973.
70. Ponce, N.M.A., Pujol, C.A., Damonte, E.B., Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydr. Res., 338, 153, 2003.
71. Fitton, J.H., Irhimeh, M.R., Teas, J., Marine algae and polysaccharides with therapeutic applications, in: Marine Nutraceuticals and Functional Foods, C. Barrow, and F. Shahidi, (Eds.), pp. 345–366, CRC Press, Boca Raton, FL, 2008.
72. Haroun-Bouhedja, F., Ellouali, M., Sinquin, C., Boisson-Vidal, C., Relationship between sulfate groups and biological activities of fucans. Thromb. Res., 100, 453, 2000.
73. Kim, K.T., Rioux, L.E., Turgeon, S.L., Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochem., 98, 27, 2014.
74. Lim, S.J., Wan Aida, W.M., Maskat, M.Y., Mamot, S., Ropien, J., Mazita Mohd, D., Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocoll., 42, 1, 280, 2014.
75. Moon, H.J., Lee, S.R., Shim, S.N., Jeong, S.H., Stonik, V.A., Rasskazov, V.A., Zvyagintseva, T., Lee, Y.H., Fucoidan inhibits UVB-induced MMP-1 expression in human skin fibroblasts. Biol. Pharm. Bull., 31, 284, 2008.
76. Rioux, L.E., Turgeon, S.L., Beaulieu, M., Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym., 69, 530, 2007a.
77. Rioux, L.E., Turgeon, S.L., Beaulieu, M., Rheological characterization of polysaccharides extracted from brown seaweeds. J. Sci. Food Agric., 87, 1630, 2007b.
78. Jin, W., Zhang, W., Wang, J., Ren, S., Song, N., Duan, D., Zhang, Q., Characterization of laminaran and a highly sulfated polysaccharide from Sargassum fusiforme. Carbohydr. Res., 385, 58, 2014.
79. Maeda, M. and Nisizawa, K., Laminaran of Ishige okamurai. Carbohydr. Res., 7, 1, 97, 1968.
80. Déléris, P., Nazih, H., Bard, J.M., Seaweeds in human health, in: Seaweed in health and disease prevention, pp. 319–367, Academic Press, San Diego, CA, USA, 2016.
81. Devillé, C., Damas, J., Forget, P., Dandrifosse, G., Peulen, O., Laminarin in the dietary fibre concept. J. Sci. Food Agric., 84, 9, 1030, 2004.
82. Devillé, C., Gharbi, M., Dandrifosse, G., Peulen, O., Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J. Sci. Food Agric., 87, 9, 1717, 2007.
83. Ayoub, A., Pereira, J.M., Rioux, L.E., Turgeon, S.L., Beaulieu, M., Moulin, V.J., Role of seaweed laminaran from Saccharina longicruris on matrix deposition during dermal tissue-engineered production. Int. J. Biol. Macromol., 75, 13, 2015.
84. Tziveleka, L.A., Ioannou, E., Roussis, V., Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr. Polym., 218, 355, 2019.
85. Lahaye, M. and Robic, A., Structure and function properties of Ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8, 1765–1774, 2007.
86. Chiellini, F. and Morelli, A., Ulvan: A versatile platform of biomaterials from renewable resources, in: Biomaterials—Physics and chemistry, R. Pignatello, (Ed.), InTech, Rijeka, Croatia, 2011.
Email: isahin@yalova.edu.tr