Читать книгу Digital Transformation of the Laboratory - Группа авторов - Страница 31
References
Оглавление1 1 Deloitte Tackling digital transformation. (2019). https://www2.deloitte.com/us/en/insights/industry/life-sciences/biopharma-company-of-the-future.html (accessed 1 February 2020).
2 2 Shandler, M. (2018). Life science's lab informatics digital criteria to separate vendor leaders from laggards. Gartner G00336151. https://www.gartner.com/en/documents/3895920/life-science-s-lab-informatics-digital-criteria-to-separ (accessed 1 February 2020).
3 3 Open Science Massively Open Online Community (MOOC) https://opensciencemooc.eu/ (accessed 1 February 2020).
4 4 Vidyasagar, A. (2018). What is CRISPR? https://www.livescience.com/58790-crispr-explained.html (accessed 1 February 2020).
5 5 Open Science https://openscience.com/ (accessed 1 February 2020).
6 6 Tapscott, D. and Tapscott, A. (2016). Blockchain Revolution. New York. ISBN: 978‐0‐241‐23785‐4: Penguin Random House.
7 7 Shute, R.E. (2017). Blockchain technology in drug discovery: use cases in R&D. Drug Discovery World 18 (October Issue): 52–57. https://www.ddw-online.com/informatics/p320746-blockchain-technology-in-drug-discovery:-use-cases-in-r&d.html.
8 8 Gawas, A.U. (2015). An overview on evolution of mobile wireless communication networks: 1G‐6G. International Journal on Recent and Innovation Trends in Computing and Communication 3: 3130–3133. http://www.ijritcc.org.
9 9 Chovan, T. and Guttman, A. (2002). Microfabricated devices in biotechnology and biochemical processing. Trends in Biotechnology 20 (3): 116–122. https://doi.org/10.1016/s0167-7799(02)01905-4.
10 10 Zimmerman, J.B., Anastas, P.T., Erythropel, H.C., and Leitner, W. (2020). Designing for a green chemistry future. Science 367 (6476): 397–400. https://doi.org/10.1126/science.aay3060.
11 11 (i) Notman, N. (2018). Seeing drugs in 3D. Chemistry World (April Issue) https://www.chemistryworld.com/features (accessed 1 February 2020). (ii) Chapman, K. (2020). 3D printing the future. Chemistry World (February Issue). https://www.chemistryworld.com/features/3d-printing-in-pharma/3008804.article (accessed 1 February 2020).
12 12 23andMe https://www.23andme.com/ (accessed 1 February 2020).
13 13 Ancestry https://www.ancestry.com/ (accessed 1 February 2020).
14 14 Plowright, A., Johnstone, C., Kihlberg, J. et al. (2011). Hypothesis driven drug design: improving quality and effectiveness of the design‐make‐test‐analyse cycle. Drug Discovery Today 17: 56–62. https://doi.org/10.1016/j.drudis.2011.09.012.
15 15 Tawfik, M., Salzmann, C., Gillet, D., et al. (2014). Laboratory as a service (LaaS): a model for developing and implementing remote laboratories as modular components. 11th International Conference on Remote Engineering and Virtual Instrumentation. IEEE. https://doi.org/10.1109/REV.2014.6784238.
16 16 Data Center Container (2019). https://www.techopedia.com/definition/2104/data-center-container (accessed 1 February 2020).
17 17 Francis Crick Institute https://www.crick.ac.uk/about-us/our-vision (accessed 1 February 2020).
18 18 Hok Architects Francis crick lab design. https://www.hok.com/projects/view/the-francis-crick-institute/ (accessed 1 February 2020).
19 19 Crow, J.M. (2020). Sustainable lab buildings. Chemistry World 17 (3): 24–29.
20 20 Steele, J. (2019). https://www.forbes.com/sites/jeffsteele/2019/08/12/the-future-of-life-science-and-tech-innovation-is-in-clusters/ (accessed 1 February 2020).
21 21 Economist The world's most valuable resource is no longer oil but data (2017). https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data (accessed 1 February 2020).
22 22 (i) Marr, B. Here's why data is not the new oil (2018). https://www.forbes.com/sites/bernardmarr/2018/03/05/heres-why-data-is-not-the-new-oil. (ii) van Zeeland, J. Data is not the new oil. https://towardsdatascience.com/data-is-not-the-new-oil-721f5109851b (accessed 1 February 2020).
23 23 The Guardian Keep it in the ground (2019). https://www.theguardian.com/environment/series/keep-it-in-the-ground (accessed 1 February 2020).
24 24 Extinction Rebellion https://rebellion.earth/ (accessed 1 February 2020).
25 25 Weiser, M. (1991). The computer for the 21st century. Scientific American 265 (3): 94–104.
26 26 Farooq, M.U. (2015). A review on internet of things (IoT). International Journal of Computer Applications 113 (1): 1–7. https://doi.org/10.5120/19787-1571.
27 27 Wilkinson, M.D., Dumontier, M., Aalbersberg, I. et al. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3: 160018. https://doi.org/10.1038/sdata.2016.18.
28 28 SiLA Consortium https://sila-standard.com/ (accessed 1 February 2020).
29 29 Oberkampf H, Krieg H, Senger C, et al. (2018). Allotrope data format – semantic data management in life sciences. https://swat4hcls.figshare.com/articles/20_Allotrope_Data_Format_Semantic_Data_Management_in_Life_Sciences_pdf/7346489/files/13574621.pdf (accessed 1 February 2020).
30 30 Feynman, R.P. (1999). Simulating physics with computers. International Journal of Theoretical Physics 21 (6/7): 467–488.
31 31 Katwala, A. (2020). Quantum computers will change the world (if they work). https://www.wired.co.uk/article/quantum-computing-explained (accessed 1 February 2020).
32 32 Gershon, T. (2019). Quantum computing expert explains one concept in 5 levels of difficulty | WIRED. https://www.youtube.com/watch?v=OWJCfOvochA (accessed 1 February 2020).
33 33 Mohseni, M., Read, P., Neven, H. et al. (2017). Commercialize quantum technologies in five years. Nature 543: 171–174. https://doi.org/10.1038/543171a.
34 34 Perkel, J. (2017). The internet of things comes to the lab. Nature 542: 125–126. https://doi.org/10.1038/542125a.
35 35 Wikipedia Big data. https://en.wikipedia.org/wiki/Big_data (accessed 1 February 2020).
36 36 Jacobsen, A., Azevedo, R., Juty, N. et al. (2020). FAIR principles: interpretations and implementation considerations. Data Intelligence 2: 10–29. https://doi.org/10.1162/dint_r_000.
37 37 (2018). Laboratory automation – robots for life scientists. https://www.nanalyze.com/2018/04/laboratory-automation-robots-life-scientists/ (accessed 1 February 2020).
38 38 General data protection regulation. https://gdpr-info.eu/ (accessed 1 February 2020).
39 39 Regulation (EU) 2016/679 of the European Parliament and of the Council. https://eur-lex.europa.eu/eli/reg/2016/679/oj (accessed 1 February 2020).
40 40 Informed consent. https://www.emedicinehealth.com/informed_consent/article_em.htm (accessed 1 February 2020).
41 41 What is cloud computing? https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/ (accessed 1 February 2020).
42 42 Hartmann, D. and van der Auweraer, H. (2020). Digital twins. Arxiv. [Preprint] https://arxiv.org/pdf/2001.09747 (accessed 1 February 2020).
43 43 Rasheed, A., San, O., and Kvamsdal, T. (2020). Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access 8: 21980–22012. https://doi.org/10.1109/ACCESS.2020.2970143.
44 44 SLAS https://slas.org/ (accessed 1 February 2020).
45 45 ELRIG https://elrig.org/ (accessed 1 February 2020).
46 46 MIT Computer Science & Artificial Intelligence Lab https://www.csail.mit.edu/ (Accessed 1 February 2020).
47 47 Sanderson, K. (2019). Automation: chemistry shoots for the moon. Nature 568: 577–579. https://doi.org/10.1038/d41586-019-01246-y.
48 48 Buermans, H.P.J. and den Dunnen, J.T. (2014). Next generation sequencing technology: advances and applications. Biochimica et Biophysica Acta 1842 (10): 1932–1941. https://doi.org/10.1016/j.bbadis.2014.06.015.
49 49 Empel, C. and Koenigs, R. (2019). Artificial‐intelligence‐driven organic synthesis—en route towards autonomous synthesis? Angewandte Chemie International Edition 58 (48): 17114–17116. https://doi.org/10.1002/anie.201911062.
50 50 Baker, M. (2016). 1,500 scientists lift the lid on reproducibility: survey sheds light on the ‘crisis’ rocking research. Nature 533 (7604): 452–454. https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970 (accessed 1 February 2020).
51 51 Protocols.IO https://www.protocols.io/ (accessed 1 February 2020).
52 52 IoT Lab https://www.iotlab.eu/ (Accessed 1 February 2020).
53 53 Olena, A. Bringing the internet of things into the lab. https://www.the-scientist.com/bio-business/bringing-the-internet-of-things-into-the-lab-64265 (accessed 1 February 2020).
54 54 Dehghantanha, A. and Choo, K. (2019). Handbook of Big Data and IoT Security. Cham: Springer https://doi.org/10.1007/978-3-030-10543-3.
55 55 Palmer, E. (2018) Merck has hardened its defenses against cyberattacks like the one last year that cost it nearly $1B. https://www.fiercepharma.com/manufacturing/merck-has-hardened-its-defenses-against-cyber-attacks-like-one-last-year-cost-it (accessed 1 February 2020).
56 56 Lazarev, K. (2016). Internet of things for personal healthcare. Bachelors thesis. https://www.theseus.fi/bitstream/handle/10024/119325/thesis_Kirill_Lazarev.pdf?sequence=1 (accessed 1 February 2020).
57 57 User Experience for Life Science https://uxls.org/ (accessed 1 February 2020).
58 58 Gartner predicts 25 percent of digital workers will use virtual employee assistants daily by 2021. https://www.gartner.com/en/newsroom/press-releases/2019-01-09-gartner-predicts-25-percent-of-digital-workers-will-u (accessed 1 February 2020).
59 59 Fraunhofer https://www.fit.fraunhofer.de/de/fb/cscw.html (accessed 1 February 2020).
60 60 Tao, F. and Qi, Q. (2019). Make more digital twins. Nature 573: 490–491. https://doi.org/10.1038/d41586-019-02849-1.
61 61 Fuller, A., Fan, Z., Day, C., and Barlowar, C. (2020). Digital twin: enabling technology, challenges and open research. Arxiv. [Preprint] https://arxiv.org/abs/1911.01276. DOI: 10.1109/ACCESS.2020.2998358.
62 62 Borfitz, D. (2019). Space is the new Frontier for life sciences research. https://www.bio-itworld.com/2019/09/16/space-is-the-new-frontier-for-life-sciences-research.aspx (accessed 1 February 2020).
63 63 Castro‐Wallace, S., Chiu, C.Y., Federman, S. et al. (2017). Nanopore DNA sequencing and genome assembly on the international space station. Scientific Reports 7: 18022. https://doi.org/10.1038/s41598-017-18364-0.
64 64 Karouia, F., Peyvan, K., and Pohorille, A. (2017). Toward biotechnology in space: high‐throughput instruments for in situ biological research beyond earth. Biotechnology Advances 35 (7): 905–932. https://doi.org/10.1016/j.biotechadv.2017.04.003.
65 65 SiLA Standard https://sila-standard.com (accessed 1 February 2020).
66 66 SiLA 2 https://gitlab.com/SiLA2 (accessed 1 February 2020).
67 67 InCHi Trust https://www.inchi-trust.org/ (accessed 1 February 2020).
68 68 DICOM Standard https://www.dicomstandard.org/ (accessed 1 February 2020).
69 69 Pistoia Alliance HELM Standard https://www.pistoiaalliance.org/helm-project/ (accessed 1 February 2020).
70 70 Allotrope Foundation https://www.allotrope.org/solution (accessed 1 February 2020).
71 71 IMI Innovative Medicines Initiative https://www.imi.europa.eu/ (accessed 1 February 2020).
72 72 Pistoia Alliance http://pistoiaalliance.org (accessed 1 February 2020).
73 73 Brooks, M. (2019). Beyond Quantum Supremacy. Nature 574 (7776): 19–21. Available from: https://doi.org/10.1038/d41586-019-02936-3.
74 74 Cao, Y., Romero, J., Olson, J.P. et al. (2019). Quantum chemistry in the age of quantum computing. Chemical Reviews 119 (19): 10856–10915. https://doi.org/10.1021/acs.chemrev.8b00803.
75 75 First image of Einstein's 'spooky' particle entanglement. https://www.bbc.co.uk/news/uk-scotland-glasgow-west-48971538 (accessed 1 February 2020).
76 76 Al‐Khalili, J. BBC four Einsteins nightmare https://www.bbc.co.uk/programmes/b04tr9x9 (Accessed 1 February 2020).
77 77 Quantum Riddle BBC four (2019). https://doi.org/10.1038/s41598-017-18364-0 (accessed 1 February 2020).
78 78 Quantum computers flip the script on spin chemistry (2020). https://www.ibm.com/blogs/research/2020/02/quantum-spin-chemistry/ (accessed 1 February 2020).
79 79 Kevin Hartnett. Quantum supremacy is coming: here's what you should know. https://www.quantamagazine.org/quantum-supremacy-is-coming-heres-what-you-should-know-20190718/ (accessed 1 February 2020).
80 80 Chong, F., Franklin, D., and Martonosi, M. (2017). Programming languages and compiler design for realistic quantum hardware. Nature 549: 180–187. https://doi.org/10.1038/nature23459.
81 81 Edinburgh EPCC https://www.epcc.ed.ac.uk/facilities/archer (accessed 1 February 2020).
82 82 Argonne National Lab https://www.anl.gov/article/supercomputing-powerhouse (accessed 1 February 2020).
83 83 China Super Computing https://en.wikipedia.org/wiki/Supercomputing_in_China (accessed 1 February 2020).
84 84 Amazon is now offering quantum computing as a service (2019). https://www.theverge.com/2019/12/2/20992602/amazon-is-now-offering-quantum-computing-as-a-service (accessed 1 February 2020).
85 85 Schneider, P., Walters, W.P., Plowright, A.T. et al. (2019). Rethinking drug design in the artificial intelligence era. Nature Reviews. Drug Discovery 19: 353–364. https://doi.org/10.1038/s41573-019-0050-3.
86 86 Mak, K. and Pichika, M. (2019). Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today 24 (3): 773–780. https://doi.org/10.1016/j.drudis.2018.11.014.
87 87 For a set of other potentially “hot” scientific areas as picked out in 2017. https://www.timeshighereducation.com/features/what-are-the-hot-research-areas-that-might-spark-the-next-big-bang (accessed 1 February 2020).
88 88 FDA https://www.fda.gov/consumers/consumer-updates/what-gene-therapy-how-does-it-work (accessed 1 February 2020).
89 89 National Cancer Institute https://www.cancer.gov/about-cancer/treatment/research/car-t-cells (accessed 1 February 2020).
90 90 Parida, S.K., Madansein, R., Singh, N. et al. (2015). Cellular therapy in tuberculosis. International Journal of Infectious Diseases 32: 32–38. https://doi.org/10.1016/j.ijid.2015.01.016.
91 91 Maldini, C.R., Ellis, G., and Riley, J.L. (2018). CAR‐T cells for infection, autoimmunity and allotransplantation. Nature Reviews. Immunology 18: 605–616. https://doi.org/10.1038/s41577-018-0042-2.
92 92 Stem cells: what they are and what they do. https://www.mayoclinic.org/tests-procedures/bone-marrow-transplant/in-depth/stem-cells/art-20048117 (accessed 1 February 2020).
93 93 Bui, F., Almeida‐da‐Silva, C.L.C., Huynh, B. et al. (2019). Association between periodontal pathogens and systemic disease. Biomedical Journal 42 (1): 27–35. https://doi.org/10.1016/j.bj.2018.12.001.
94 94 Kakasis, A. and Panitsa, G. (2019). Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. International Journal of Antimicrobial Agents 53 (1): 16–21. https://doi.org/10.1016/j.ijantimicag.2018.09.004.
95 95 Lu, R., Hwang, Y.‐C., Liu, I.‐J. et al. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science 27: 1. https://doi.org/10.1186/s12929-019-0592-z.
96 96 Bajan, S. and Hutvagner, G. (2020). RNA‐based therapeutics: from antisense oligonucleotides to miRNAs. Cells 9: 137. https://doi.org/10.3390/cells9010137.
97 97 Fosgerau, K. and Hoffmann, T. (2015). Peptide therapeutics: current status and future directions. Drug Discovery Today 20 (1): 122–128; https://doi.org/10.1016/j.drudis.2014.10.003.
98 98 Burslem, G.M. and Crews, C.M. (2020). Proteolysis‐targeting chimeras as therapeutics and tools for biological discovery. Cell 181: 1. https://doi.org/10.1016/j.cell.2019.11.031.
99 99 Ursell, L.K., Metcalf, J.L., Parfrey, L.W., and Knight, R. (2012). Defining the human microbiome. Nutrition Reviews 70 (Suppl 1): S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x.
100 100 Eloe‐Fadrosh, E.A. and Rasko, D.A. (2013). The human microbiome: from symbiosis to pathogenesis. Annual Review of Medicine 64: 145–163. https://doi.org/10.1146/annurev-med-010312-133513.
101 101 Russell, W.M.S. and Burch, R.L. (1959). The Principles of Humane Experimental Technique. London. ISBN 0900767782 [1]: Methuen.
102 102 (i) NC3Rs https://www.nc3rs.org.uk/. (ii) European Union: Directive 2010/63/EU. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0063 (accessed 1 February 2020).
103 103 Wenner Moyer, M. (2011). Organs‐on‐a‐chip for faster drug development. Scientific American. https://www.scientificamerican.com/article/organs-on-a-chip/ (accessed 1 February 2020).
104 104 Voigtländer, B. (2015). Scanning Probe Microscopy. NanoScience and Technology. London, UK: Springer‐Verlag. https://doi.org/10.1007/978-3-662-45240-0.
105 105 Milne, J.L., Borgnia, M.J., Bartesaghi, A. et al. (2012). Cryo‐electron microscopy–a primer for the non‐microscopist. The FEBS Journal 280 (1): 28–45. https://doi.org/10.1111/febs.12078.
106 106 Gao, L., Zhao, H., Li, T. et al. (2018). Atomic force microscopy based tip‐enhanced Raman spectroscopy in biology. International Journal of Molecular Sciences 19: 1193. https://doi.org/10.3390/ijms19041193.
107 107 Debata, S., Das, T.R., Madhuri, R., and Sharma, P.K. (2018). Materials characterization using scanning tunneling microscopy: from fundamentals to advanced applications. In: Handbook of Materials Characterization (ed. S. Sharma), 217–261. Cham: Springer https://doi.org/10.1007/978-3-319-92955-2_6.
108 108 Michel, B. (1991). Highlights in condensed matter physics and future prospects. In: STM in Biology. NATO ASI Series (Series B: Physics), vol. 285 (ed. L. Esaki), 549–572. Boston, MA: Springer https://doi.org/10.1007/978-1-4899-3686-8_26.
109 109 Broadwith, P. (2017). Explainer: what is cryo‐electron microscopy? Chemistry World. https://www.chemistryworld.com/news/explainer-what-is-cryo-electron-microscopy/3008091.article (accessed 1 February 2020).
110 110 Aminu, M.D., Nabavi, S.A., Rochelle, C.A., and Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy 208: 1389–1419. https://doi.org/10.1016/j.apenergy.2017.09.015.
111 111 Heiska, J., Nisula, M., and Karppinen, M. (2019). Organic electrode materials with solid‐state battery technology. Journal of Materials Chemistry A 7: 18735–18758. https://doi.org/10.1039/C9TA04328D.
112 112 (i) Osuchowski, Marcin, F., Aletti, Federico, Cavaillon, Jean‐Marc, Flohé, Stefanie B., Giamarellos‐Bourboulis, Evangelos J., Huber‐Lang, Markus, Relja, Borna, Skirecki, Tomasz, Szabó, Andrea, and Maegele, Marc (2020). SARS‐CoV‐2/COVID‐19: evolving reality, global response, knowledge gaps, and opportunities. SHOCK 54 (4): 416–437. https://doi:10.1097/SHK.0000000000001565. (ii) https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/ (accessed 16 November 2020). (iii) Lisheng, Wang, Yiru, Wang, Dawei, Ye, and Qingquan, Liu (2020). Review of the 2019 novel coronavirus (SARS‐CoV‐2) based on current evidence. International Journal of Antimicrobial Agents 55 (6): 105948. https://doi.org/10.1016/j.ijantimicag.2020.105948 (accessed 16 November 2020).
113 113 (i) UK Health Secretary launches biggest diagnostic lab network in British history to test for coronavirus (2020). https://www.gov.uk/government/news/health-secretary-launches-biggest-diagnostic-lab-network-in-british-history-to-test-for-coronavirus (accessed 16 November 2020). (ii) Germany's ‘bottom‐up’ testing keeps coronavirus at bay. https://www.ft.com/content/0a7bc361-6fcc-406d-89a0-96c684912e46 (accessed 16 November 2020).
114 114 Archana Koirala, Ye Jin Joo, Ameneh Khatami, Clayton Chiu, and Philip N. Britton (2020). Vaccines for COVID-19: the current state of play. Paediatric Respiratory Reviews 35: 43–49. https://doi.org/10.1016/j.prrv.2020.06.010 (accessed 16 November 2020).
115 115 Christiaens, Stan (2020). The importance of data accuracy in the fight against Covid-19. https://www.computerweekly.com/opinion/The-importance-of-data-accuracy-in-the-fight-against-Covid-19 (accessed 16 November 2020).