Читать книгу Modern Trends in Structural and Solid Mechanics 3 - Группа авторов - Страница 25

1.12. References

Оглавление

Adiele, R.C. and Adiele, C.A. (2019). Metabolic defects in multiple sclerosis. Mitochondrion, 44, 7–14.

Baker, N., Patel, J., Khacho, M. (2019). Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion, 49, 259–268.

Beard, D.A. (2005). A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput. Biol., 1(4), 252–264.

Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T., Rossignol, R. (2007). Mitochondrial bioenergetics and structural network organization. J. Cell Sci., 120(5), 838–848.

Benaroya, H. (2020). Brain energetics, mitochondria, and traumatic brain injury. Rev. Neurosci. [Online]. Available at: https://doi.org/10.1515/revneuro-2019-0086.

Bertram, R., Pedersen, M.G., Luciani, D.S., Sherman, A. (2006). A simplified model for mitochondrial ATP production. J. Theor. Biol., 243, 575–586.

Buhlman, L.M. (2016). Mitochondrial Mechanisms of Degeneration and Repair in Parkinson’s Disease. Springer Nature, Cham, Switzerland.

Castora, F.J. (2019). Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Prog. Neuropsychopharmacol. Biol. Psychiatry, 92, 83–108.

Chan, F., Lax, N.Z., Voss, C.M., Aldana, B.I., Whyte, S., Jenkins, A., Nicholson, C., Nichols, S., Tilley, E., Powell, Z., Waagepetersen, H.S., Davies, C.H., Turnbull, D.M., Cunningham, M.O. (2019). The role of astrocytes in seizure generation: Insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain, 142, 391–411.

Chauhan, A., Vera, J., Wolkenhauer, O. (2014). The systems biology of mitochondrial fission and fusion and implications for disease and aging. Biogerontology, 15, 1–12.

Chen, Y., Meyer, J.N., Hill, H.Z., Lange, G., Condon, M.R., Klein, J.C., Ndirangul, D., Falvo, M.J. (2017). Role of mitochondrial DNA damage and dysfunction on veterans with Gulf War Illness. PLoS One, 12(9), e0184832.

Correia, S.C. and Moreira, P.I. (2018). Role of mitochondria in neurodegenerative diseases: The dark side of the “energy factory”. In Mitochondrial Biology and Experimental Therapeutics, Oliviera, P.J. (ed.). Springer Nature, Cham, Switzerland.

Diogo, C.V., Yambire, K.F., Mosquera, L.F., Branco, T., Raimundo, N. (2018). Mitochondrial adventures at the organelle society. Biochem. Biophys. Res. Commun., 500, 87–93.

Eisner, V., Picard, M., Hajnóczky, G. (2018). Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol., 20, 755–765.

Elfawy, H.A. and Das, B. (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 218, 165–184.

Elishakoff, I. and Zingales, M. (2003). Contrasting probabilistic and anti-optimization approaches in an applied mechanics problem. Int. J. Solids Struct., 40, 4281–4297.

Elishakoff, I., Haftka, R.T., Fang, J. (1994). Structural design under bounded uncertainty – Optimization with anti-optimization. Comp. Struct., 53(6), 1401–1405.

Feng, Q. and Kornmann, B. (2018). Mechanical forces on cellular organelles. J. Cell Sci., 131, 1–9.

Ghochani, M., Nulton, J.D., Salamon, P., Frey, T.G., Rabinovitch, A., Baljon, A.R.C. (2010). Tensile forces and shape entropy explain observed crista structure in mitochondria. Biophys. J., 99, 3244–3254.

Giorgi, C., De Stefani, D., Bononi, A., Rizzuto, R., Pinton, P. (2009). Structural and functional link between the mitochondrial networks and the endoplasmic reticulum. Int. J. Biochem. Cell Biol., 41(10), 1817–1827.

Kembro, J.M., Aon, M.A., Winslow, R.L., O’Rourke, B., Cortassa, S. (2013). Integrating mitochondrial energetics, Redox and ROS metabolic networks: A two-compartment model. Biophys. J., 104, 332–343.

Koslik, H.J., Hamilton, G., Golomb, B.A. (2014). Mitochondrial dysfunction in Gulf War Illness revealed by 31Phosphorus magnetic resonance spectroscopy: A case-control study. PLoS One, 9(3), e92887.

Kurt, B. and Topal, T. (2013). Mitochondrial disease. Dis. Mol. Med., 1(1), 11–14.

Lackner, L.L. (2014). Shaping the dynamic mitochondrial network. BMC Biol., 12, 35.

Lemonde, H. and Rahman, S. (2014). Inherited mitochondrial disease. Pediatr. Child Health, 25(3), 133–138.

Lim, C.T., Zhou, E.H., Quek, S.T. (2006). Mechanical models for living cells – A review. J. Biomech., 39, 195–216.

Mannella, C.A., Lederer, W.J., Jafri, M.S. (2013). The connection between inner membrane topology and mitochondrial function. J. Mol. Cell Cardiol., 62, 51–57.

Marchi, S., Patergnani, S., Pinton, P. (2014). The endoplasmic reticulum–mitochondria connection: One touch multiple functions. Biochim. Biophys. Acta, 1837, 461–469.

Moeendarbary, E. and Harris, A.R. (2014). Cell mechanics: Principles, practices, and prospects. WIRE’s Sys. Bio. Med., 6, 371–388.

Pagliuso, A., Cossart, P., Stavru, F. (2018). The ever-growing complexity of the mitochondrial fission machinery. Cell Mol. Life Sci., 75, 355–374.

Panchal, K. and Tiwari, A.K. (2019). Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion, 47, 151–173.

Patel, P.K., Shirihai, O., Huang, K.C. (2013). Optimal dynamics for quality control in spatially distributed mitochondrial networks. PLOS Comput. Biol., 9(e1003108), 1–11.

Petridou, N.I., Spiró, Z., Heisenberg, C.-P. (2017). Multiscale force sensing in development. Nat. Cell Biol., 19(6), 581–588.

Qi, H., Li, L., Shuai, J. (2015). Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations. Scientific Reports, 5(7984). DOI:10.1038/srep07984.

Qiu, Z. and Elishakoff, I. (2001). Anti-optimization technique – A generalization of interval analysis for nonprobabilistic treatment of uncertainty. Chaos Soliton Fract., 12, 1747–1759.

Rossi, M.J. and Pekkurnaz, G. (2019). Powerhouse of the mind: Mitochondrial plasticity at the synapse. Curr. Opin. Neurobiol., 57, 149–155.

Saa, A. and Siqueira, K.M. (2013). Modeling ATP production in mitochondria. Bull. Math. Biol., 75, 1636–1651.

Schwarz, T.L. (2013). Mitochondrial trafficking in neurons. CSH Perspect. Biol., 5, a011304.

Simcox, E.M. and Reeve, A.K. (2016). An introduction to mitochondria, their structure and functions. In Mitochondrial Dysfunction in Neurodegenerative Disorders, Reeve, A.K., Simcox, E.M., Duchen, M.R., Turnbull, D.M. (eds). Springer Nature, Cham, Switzerland.

Skulachev, V.P. (2001). Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci., 26(1), 23–29.

Tzameli, I. (2012). The evolving role of mitochondria in metabolism. Trends Endocrinol. Metab., 23(9), 417–419.

Vakifahmetoglu-Norberg, H., Ouchida, A.T., Norberg, E. (2017). The role of mitochondria in metabolism and cell death. Biochem. Bioph. Res. Co., 482, 426–431.

Van der Bliek, A.M., Shen, Q., Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. CSH Perspect. Biol., 5, a011072.

Vanhauwaert, R., Bharat, V., Wang, X. (2019). Surveillance and transport of mitochondria in neurons. Curr. Opin. Neurobiol., 57, 87–93.

Venkateswaran, N., Sekhar, S., Sanjayasarathy, T.T., Krishnan, S.N., Kabaleeswaran, D.K., Ramanathan, S., Narayanasamy, N., Jagathrakshakan, S.S., Vignesh, S.R. (2012). Energetics based spike generation of a single neuron: Simulation results and analysis. Front. Neuroenerg., 4(2), 1–12.

Vinogradskaya, I.S., Kuznetsova, T.G., Suprunenko, E.A. (2014). Mitochondrial network of skeletal muscle fiber. Mosc. U. Biol. Bull., 69(2), 57–66.

Wai, T. and Langer, T. (2016). Mitochondrial dynamics and metabolic regulation. Trends Endocrinal. Metab., 27(2), 105–117.

Westermann, B. (2012). Bioenergetic role of mitochondrial fusion and fission. Biochim. Biophys. Acta., 1817, 1833–1838.

Zick, M. and Reichert, A.S. (2011). Mitochondria, in Cellular Domains, Nabi, I.R. (ed.). John Wiley & Sons, Chichester, England, 87–111.

Chapter written by Haym BENAROYA.

Modern Trends in Structural and Solid Mechanics 3

Подняться наверх