Читать книгу Machine Learning Approach for Cloud Data Analytics in IoT - Группа авторов - Страница 44

References

Оглавление

1. Pandit, A. and Radstake, T.R., Machine learning in rheumatology approaches the clinic. Nat. Rev. Rheumatol., 2, 69–70, 2020.

2. Kulin, M., Kazaz, T., De Poorter, E., Moerman, I., A survey on machine learning-based performance improvement of wireless networks: PHY, MAC and network layer. Electronics, 3, 318, 2021.

3. Alsharif, M.H., Kelechi, A.H., Yahya, K., Chaudhry, S.A., Machine Learning Algorithms for Smart Data Analysis in the Internet of Things Environment: Taxonomies and Research Trends. Symmetry, 12, 1, 88, 2020.

4. Liu, C., Feng, Y., Lin, D., Wu, L., Guo, M., Iot based laundry services: an application of big data analytics, intelligent logistics management, and machine learning techniques. Int. J. Prod. Res., 58, 17, 5113–5131, 2020.

5. Roccetti, M., Delnevo, G., Casini, L. and Salomoni, P., A Cautionary Tale for Machine Learning Design: why we Still Need Human-Assisted Big Data Analysis. Mobile Networks Appl., 25, 1–9, 2020.

6. https://learning.oreilly.com/library/view/machine-learning-end-toend/9781788622219/index.html

7. https://learning.oreilly.com/library/view/machine-learning/9780128015223/Cover.xhtml

8. Zolanvari, M., Teixei ra, M.A., Gupta, L., Khan, K.M., Jain, R., Machine learning-based network vulnerability analysis of industrial Internet of Things. IEEE Internet Things J., 6, 4, 6822–6834, 2019.

9. da Costa, K.A.P., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C., Internet of Things: A survey on machine learning-based intrusion detection approaches. Comput. Networks, 151, 147–157, 2019.

10. Tuli, S., Basumatary, N., Gill, S.S., Kahani, M., Arya, R.C., Wander, G.S., Buyya, R., Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated iot and fog computing environments. Future Gener. Comput. Syst., 104, 187–200, 2020.

11. Liang, F., Hatcher, W.G., Xu, G., Nguyen, J., Liao, W., Yu, W., Towards online deep learning-based energy forecasting. 2019 28th International Conference on Computer Communication and Networks (ICCCN), IEEE, pp. 1–9, 2019.

12. Ren, J., Wang, H., Hou, T., Zheng, S., Tang, C., Federated learning-based computation offloading optimization in edge computing-supported internet of things. IEEE Access, 7, 69194–69201, 2019.

13. Verma, A. and Ranga, V., Machine learning based intrusion detection systems for IoT applications. Wireless Pers. Commun., 111, 4, 2287–2310, 2020.

14. Msadek, N., Soua, R., Engel, T., Iot device fingerprinting: Machine learning based encrypted traffic analysis. 2019 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, pp. 1–8, 2019.

15. Tuli, S., Basumatary, N., Buyya, R., Edgelens: Deep learning-based object detection in integrated iot, fog and cloud computing environments. 2019 4th International Conference on Information Systems and Computer Networks (ISCON), IEEE, pp. 496–502, 2019.

16. Luo, X.J., Oyedele, L.O., Ajayi, A.O., Monyei, C.G., Akinade, O.O., Akanbi, L.A., Development of an IoT-based big data platform for day-ahead prediction of building heating and cooling demands. Adv. Eng. Inf., 41, 100926, 2019.

17. Zafar, S., Jangsher, S., Bouachir, O., Aloqaily, M., Othman, J.B., QoS enhancement with deep learning-based interference prediction in mobile IoT. Comput. Commun., 148, 86–97, 2019.

18. Min, Q., Lu, Y., Liu, Z., Su, C., Wang, B., Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manage., 49, 502–519, 2019.

19. Garg, S., Kaur, K., Kumar, N., Kaddoum, G., Zomaya, A.Y., Ranjan, R., A hybrid deep learning-based model for anomaly detection in cloud datacenter networks. IEEE Trans. Netw. Serv. Manage., 16, 3, 924–935, 2019.

20. Tiwari, R., Sharma, N., Kaushik, I., Tiwari, A., Bhushan, B., Evolution of IoT & Data Analytics using Deep Learning. 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), IEEE, pp. 418–423, 2019.

21. Sujatha, R., Nathiya, S., Chatterjee, J.M., Clinical Data Analysis Using IoT Data Analytics Platforms, in: Internet of Things Use Cases for the Healthcare Industry, pp. 271–293, Springer, Cham, 2020.

22. Potluri, S., Health record data analysis using wireless wearable technology device. JARDCS, 10, 9, 696–701, 2018.

23. Mangla, M., Akhare, R., Ambarkar, S., Context-Aware Automation Based Energy Conservation Techniques for IoT Ecosystem, in: Energy Conservation for IoT Devices, pp. 129–153, Springer, Singapore, 2019.

24. Akhare, R., Mangla, M., Deokar, S., Wadhwa, V., Proposed Framework for Fog Computing to Improve Quality-of-Service in IoT Applications, in: Fog Data Analytics for IoT Applications, pp. 123–143, Springer, Singapore, 2020.

25. Potluri, S., IOT Enabled Cloud Based Healthcare System Using Fog Computing: A Case Study. J. Crit. Rev., 7, 6, 1068–1072, 2020.

26. Chatterjee, J., IoT with Big Data Framework using Machine Learning Approach. Int. J. Mach. Learn. Networked Collab. Eng., 2, 02, 75–85, 2018.

27. Chatterjee, J.M., Priyadarshini, I., Le, D.N., Fog Computing and Its security issues, in: Security Designs for the Cloud, Iot, and Social Networking, pp. 59–76, 2019.

28. Shri, M.L., Devi, E.G., Balusamy, B., Chatterjee, J.M., Ontology-Based Information Retrieval and Matching in IoT Applications, in: Natural Language Processing in Artificial Intelligence, pp. 113–130, Apple Academic Press, India, 2020.

29. Kumar, A., Payal, M., Dixit, P., Chatterjee, J.M., Framework for Realization of Green Smart Cities Through the Internet of Things (IoT), in: Trends in Cloud-based IoT, pp. 85–111, Springer, Cham, 2020.

30. Sujatha, R., Nathiya, S., Chatterjee, J.M., Clinical Data Analysis Using IoT Data Analytics Platforms, in: Internet of Things Use Cases for the Healthcare Industry, pp. 271–293, Springer, Cham, 2020.

31. Priya, G., Shri, M.L., GangaDevi, E., Chatterjee, J.M., IoT Use Cases and Applications, in: Internet of Things Use Cases for the Healthcare Industry, pp. 205–220, Springer, Cham, 2020.

32. Raj, P., Chatterjee, J.M., Kumar, A., Balamurugan, B., Internet of Things Use Cases for the Healthcare Industry, Springer International Publishing, India, 2020.

33. Garg, S., Chatterjee, J.M., Le, D.N., Implementation of Rest Architecure-Based Energy-Efficient Home Automation System, Security Designs for the Cloud, Iot, and Social Networking, 143–152, 2019.

34. Almusaylim, Z.A. and Zaman, N., A review on smart home present state and challenges: linked to context-awareness internet of things (IoT). Wireless networks, 25, 6, 3193–3204, 2019.

35. Almulhim, M. and Zaman, N., Proposing secure and lightweight authentication scheme for IoT based E-health applications. 2018 20th International Conference on Advanced Communication Technology (ICACT), IEEE, pp. 481–487, 2018, February.

36. Almulhim, M., Islam, N., Zaman, N., A Lightweight and Secure Authentication Scheme for IoT Based E-Health Applications. Int. J. Comput. Sci. Netw. Secur., 19, 1, 107–120, 2019.

37. Alshammari, M.O., Almulhem, A.A., Zaman, N., Internet of Things (IoT): Charity Automation. Int. J. Adv. Comput. Sci. Appl. (IJACSA), 8, 2, 166–170, 2017.

38. Mangla, M. and Sharma, N., Fuzzy Modelling of Clinical and Epidemiological Factors for COVID-19, Research Square, 1, 1–15, 2020.

39. Potluri, S., An IoT based solution for health monitoring using a body-worn sensor enabled device. JARDCS, 10, 9, 646–651, 2018.

40. Potluri, S., Health record data analysis using wireless wearable technology device. JARDCS, 10, 9, 696–701, 2018.

*Corresponding author: deepika.rbp@gmail.com

Machine Learning Approach for Cloud Data Analytics in IoT

Подняться наверх