Читать книгу Biofuel Cells - Группа авторов - Страница 30

References

Оглавление

1. Santos, E., Schmickler, W., Catalysis in Electrochemistry: from Fundamentals to Strategies for Fuel Cell Development, pp. IX–X, Wiley, 2011.

2. Logan, B.E., Hamelers, B., Rozendal, R.A., Schrorder, U., et al., Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40, 5181–5192, 2006.

3. Davis, J.B., Yarbrough, H.F., Preliminary Experiments on a Microbial Fuel Cell. Science, 137, 615–616, 1962.

4. Yahiro, A.T., Lee, S.M., Kimble, D.O., Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies. Biochim. Biophys. Acta (BBA)—Specialized Section on Biophysical Subjects, 88, 375–383, 1964.

5. Milton, R.D., Minteer, S.D., Direct enzymatic bioelectrocatalysis: Differentiating between myth and reality. J. R. Soc. Interface, 14, 20170253, 2017.

6. Navaee, A., Salimi, A., FAD-based glucose dehydrogenase immobilized on thionine/AuNPs frameworks grafted on amino-CNTs: Development of high power glucose biofuel cell and biosensor. J. Electroanal. Chem., 815, 105–113, 2018.

7. Meredith, M.T., Minson, M., Hickey, D., Artyushkova, K., et al., Anthracene-Modified Multi-Walled Carbon Nanotubes as Direct Electron Transfer Scaffolds for Enzymatic Oxygen Reduction. ACS Catal., 1, 1683–1690, 2011.

8. Funabashi, H., Murata, K., Tsujimura, S., Effect of Pore Size of MgO-templated Carbon on the Direct Electrochemistry of D-fructose Dehydrogenase. Electrochem., 83, 372–375, 2015.

9. Akers, N.L., Moore, C.M., Minteer, S.D., Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochim. Acta, 50, 2521–2525, 2005.

10. Galindo-de-la-Rosa, J., Arjona, N., Moreno-Zuria, A., Ortiz-Ortega, E., et al., Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids. Biosens. Bioelectron., 92, 117–124, 2017.

11. Quah, T., Abdellaoui, S., Milton, R.D., Hickey, D.P., Minteer, S.D., Cholesterol as a Promising Alternative Energy Source: Bioelectrocatalytic Oxidation Using NAD-Dependent Cholesterol Dehydrogenase in Human Serum. J. Electrochem. Soc., 164, H3024–H3029, 2017.

12. Escalona-Villalpando, R.A., Reid, R.C., Milton, R.D., Arriaga, L. G., et al., Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J. Power Sources, 342, 546–552, 2017.

13. Ramanavicius, A., Kausaite-Minkstimiene, A., Morkvenaite-Vilkonciene, I., Genys, P., et al., Biofuel cell based on glucose oxidase from Penicillium funiculosum 46.1 and horseradish peroxidase. Chem. Eng. J., 264, 165–173, 2015.

14. Singh, R.S., Singh, T., Pandey, A., Chapter 1—Microbial Enzymes—An Overview, in: Adv. Enzyme Technol., Singh, R.S., Singhania, R.R., Pandey, A., Larroche, C. (Eds.), pp. 1–40, Elsiever, 2019.

15. Petrović, D., Frank, D., Kamerlin, S.C.L., Hoffmann, K., Strodel, B., Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase. ACS Catal., 7, 6188–6197, 2017.

16. Ryabov, A.D., Transition metal chemistry of glucose oxidase, horseradish peroxidase, and related enzymes, in: Including Bioinorganic Studies, van Eldik, R. (Ed.), pp. 201–269, Academic Press, 2004.

17. Leskovac, V., Trivic, S., Wohlfahrt, G., Kandrac, J., Pericin, D., Glucose oxidase from Aspergillus niger: The mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int. J. Biochem. Cell Biol., 37, 731–750, 2005.

18. Hecht, H.J., Kalisz, H.M., Hendle, J., Schmid, R.D., Schomburg, D., Crystalstructure of glucose-oxidase from Aspergillus-niger refined at 2.3 Angstrom resolution. J. Mol. Biol., 229, 153–172, 1993.

19. Tarasevich, M.R., Bioelectrocatalysis, in: Comprehensive Treatise of Electrochemistry: Volume 10 Bioelectrochemistry, Srinivasan, S., Chizmadzhev, Y.A., Bockris, J.O.M., Conway, B.E., Yeager, E. (Eds.), pp. 231–295, Springer US, Boston, MA, 1985.

20. Mehra, R., Muschiol, J., Meyer, A.S., Kepp, K.P., A structural–chemical explanation of fungal laccase activity. Sci. Reports, 8, 17285, 2018.

21. Barton, S.C., Gallaway, J., Atanassov, P., Enzymatic biofuel cells for Implantable and microscale devices. Chem. Rev., 104, 4867–4886, 2004.

22. Mot, A.C., Silaghi-Dumitrescu, R., Laccases: Complex architectures for one-electron oxidations. Biochem.-Moscow, 77, 1395–1407, 2012.

23. Bertrand, T., Jolivalt, C., Caminade, E., Joly, N., et al., Purification and preliminary crystallographic study of Trametes versicolor laccase in its native form. Acta Crystallographica Section D—Biological Crystallography, 58, 319–321, 2002.

24. Yoshida, H., LXIII.—Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. J. Chem. Soc. Transactions, 43, 472–486, 1883.

25. Bergel, A., Feron, D., Mollica, A., Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Comm., 7, 900–904, 2005.

26. He, Z., Angenent, L.T., Application of bacterial biocathodes in microbial fuel cells. Electroanal., 18, 2009–2015, 2006.

27. Rhoads, A., Beyenal, H., Lewandowski, Z., Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol., 39, 4666–4671, 2005.

28. Van Eerten-Jansen, M., Ter Heijne, A., Buisman, C.J.N., Hamelers, H.V.M., Microbial electrolysis cells for production of methane from CO2: Long-term performance and perspectives. Int. J. Energy Res., 36, 809–819, 2012.

29. Gacitua, M.A., Munoz, E., Gonzalez, B., Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH. Bioelectrochem., 119, 26–32, 2018.

30. Dykstra, C.M., Pavlostathis, S.G., Methanogenic Biocathode Microbial Community Development and the Role of Bacteria. Environ. Sci. Technol., 51, 5306–5316, 2017.

31. Cournet, A., Delia, M.L., Bergel, A., Roques, C., Berge, M., Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Grampositive. Electrochem. Comm., 12, 505–508, 2010.

32. McCormick, A.J., Bombelli, P., Bradley, R.W., Thorne, R., et al., Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci., 8, 1092–1109, 2015.

33. Schlager, S., Haberbauer, M., Fuchsbauer, A., Hemmelmair, C., et al., Bio-Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane. Chemsuschem, 10, 226–233, 2017.

34. Wan, L.L., Li, X. J., Zang, G.L., Wang, X., et al., A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell. Rsc Adv., 5, 82276–82281, 2015.

35. Rojas, M.D.A., Mateos, R., Sotres, A., Zaiat, M., et al., Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply. Energy Conver. Manage., 177, 272–279, 2018.

36. Tischer, W., Wedekind, F., Immobilized Enzymes: Methods and Applications, in: Biocatalysis—From Discovery to Application, Fessner, W.-D., Archelas, A., Demirjian, D. C., Furstoss, R., et al. (Eds.), pp. 95–126, Springer, Berlin Heidelberg, 1999.

37. Homaei, A.A., Sariri, R., Vianello, F., Stevanato, R., Enzyme immobilization: an update. J. Chem. Biol., 6, 185–205, 2013.

38. Zhang, D.-H., Yuwen, L.-X., Peng, L.-J., Parameters affecting the performance of immobilized enzyme. J. Chem., 2013, 2013.

39. Vasylieva, N., Marinesco, S., Enzyme Immobilization on Microelectrode Biosensors, in: Microelectrode Biosensors, Marinesco, S., Dale, N. (Eds.), pp. 95–114, Humana Press, Totowa, NJ, 2013.

40. Nguyen, H.H., Kim, M., An overview of techniques in enzyme immobilization. Appl. Sci. Convergence Technol., 26, 157–163, 2017.

41. Minteer, S.D., Enzyme Stabilization and Immobilization: Methods and Protocols, Springer New York, 2018.

42. Rincón, R.A., Lau, C., Luckarift, H.R., Garcia, K.E., et al., Enzymatic fuel cells: Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosens. Bioelectron., 27, 132–136, 2011.

43. Yu, E.H., Sundmacher, K., Enzyme electrodes for glucose oxidation prepared by electropolymerization of pyrrole. Proc. Safet. Environ. Prot., 85, 489–493, 2007.

44. Bunte, C., Prucker, O., Konig, T., Ruhe, J., Enzyme Containing Redox Polymer Networks for Biosensors or Biofuel Cells: A Photochemical Approach. Langmuir, 26, 6019–6027, 2010.

45. Meredith, S., Xu, S., Meredith, M.T., Minteer, S.D., Hydrophobic Saltmodified Nafion for Enzyme Immobilization and Stabilization. JoVE, e3949, 2012.

46. Virgen-Ortíz, J.J., dos Santos, J.C.S., Berenguer-Murcia, Á., Barbosa, O., et al., Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J. Mater. Chem. B, 5, 7461–7490, 2017.

47. Calvo, E.J., Etchenique, R., Danilowicz, C., Diaz, L., Electrical Communication between Electrodes and Enzymes Mediated by Redox Hydrogels. Anal. Chem., 68, 4186–4193, 1996.

48. Calvo, E.J., Etchenique, R., Pietrasanta, L., Wolosiuk, A., Danilowicz, C., Layer-By-Layer Self-Assembly of Glucose Oxidase and Os(Bpy)2ClPyCH2NH−poly(Allylamine) Bioelectrode. Anal. Chem., 73, 1161–1168, 2001.

49. El Ichi-Ribault, S., Zebda, A., Tingry, S., Petit, M., et al., Performance and stability of chitosan-MWCNTs-laccase biocathode: Effect of MWCNTs surface charges and ionic strength. J.Electroanal. Chem., 799, 26–33, 2017.

50. Rengaraj, S., Mani, V., Kavanagh, P., Rusling, J., Leech, D., A membrane-less enzymatic fuel cell with layer-by-layer assembly of redox polymer and enzyme over graphite electrodes. Chem. Commun., 47, 11861–11863, 2011.

51. Meredith, M.T., Kao, D.-Y., Hickey, D., Schmidtke, D.W., Glatzhofer, D.T., High Current Density Ferrocene-Modified Linear Poly(ethylenimine) Bioanodes and Their Use in Biofuel Cells. J. Electrochem. Soc., 158, B166–B174, 2011.

52. Dunn, B., Lan, E., Design of Biohybrid Structures for Enzyme–Electrode Interfaces, Hybrid Organic.–Inorganic Interfaces, pp. 767–791, John Wiley & Sons, Ltd, 2017.

53. Christwardana, M., Kim, K.J., Kwon, Y., Fabrication of Mediatorless/Membraneless Glucose/Oxygen Based Biofuel Cell using Biocatalysts Including Glucose Oxidase and Laccase Enzymes. Sci. Reports, 6, 30128, 2016.

54. Díaz-González, J.-c. M., Escalona-Villalpando, R.A., Arriaga, L.G., Minteer, S.D., Casanova-Moreno, J.R., Effects of the cross-linker on the performance and stability of enzymatic electrocatalytic films of glucose oxidase and dimethylferrocene-modified linear poly(ethyleneimine). Electrochim. Acta, 337, 135782, 2020.

55. Oztekin, Y., Krikstolaityte, V., Ramanaviciene, A., Yazicigil, Z., Ramanavicius, A., 1,10-Phenanthroline derivatives as mediators for glucose oxidase. Biosens. Bioelectron., 26, 267–270, 2010.

56. MacAodha, D., Ferrer, M.L., Conghaile, P.Ó., Kavanagh, P., Leech, D., Crosslinked redox polymer enzyme electrodes containing carbon nanotubes for high and stable glucose oxidation current. Phys. Chem. Chem. Phys., 14, 14667–14672, 2012.

57. Kobayashi, S., Hiroishi, K., Tokunoh, M., Saegusa, T., Chelating properties of linear and branched poly(ethylenimines). Macromol., 20, 1496–1500, 1987.

58. Chung, Y., Hyun, K.H., Kwon, Y., Fabrication of a biofuel cell improved by the π-conjugated electron pathway effect induced from a new enzyme catalyst employing terephthalaldehyde. Nanoscale, 8, 1161–1168, 2016.

59. Chung, Y., Christwardana, M., Tannia, D.C., Kim, K.J., Kwon, Y., Biocatalyst including porous enzyme cluster composite immobilized by two-step cross-linking and its utilization as enzymatic biofuel cell. J. Power Sources, 360, 172–179, 2017.

60. Castelli, F., Pitarresi, G., Giammona, G., Influence of different parameters on drug release from hydrogel systems to a biomembrane model. Evaluation by differential scanning calorimetry technique. Biomater., 21, 821–833, 2000.

61. Speit, G., Neuss, S., Schütz, P., Fröhler-Keller, M., Schmid, O., The genotoxic potential of glutaraldehyde in mammalian cells in vitro in comparison with formaldehyde. Mutat. Res./Genetic Toxicol. Environ. Mutagen., 649, 146–154, 2008.

62. Vasylieva, N., Barnych, B., Meiller, A., Maucler, C., et al., Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens. Bioelectron., 26, 3993–4000, 2011.

63. Meredith, M.T., Hickey, D.P., Redemann, J.P., Schmidtke, D.W., Glatzhofer, D.T., Effects of ferrocene methylation on ferrocene-modified linear poly(ethylenimine) bioanodes. Electrochim. Acta, 92, 226–235, 2013.

64. Hickey, D.P., Halmes, A.J., Schmidtke, D.W., Glatzhofer, D.T., Electrochemical Characterization of Glucose Bioanodes Based on Tetramethylferrocene-Modified Linear Poly(ethylenimine). Electrochim. Acta, 149, 252–257, 2014.

65. Chen, J., Munje, R., Godman, N.P., Prasad, S., et al., Improved Performance of Glucose Bioanodes Using Composites of (7,6) Single-Walled Carbon Nanotubes and a Ferrocene-LPEI Redox Polymer. Langmuir, 33, 7591–7599, 2017.

66. Conghaile, P.O., Kamireddy, S., MacAodha, D., Kavanagh, P., Leech, D., Mediated glucose enzyme electrodes by cross-linking films of osmium redox complexes and glucose oxidase on electrodes. Anal. Bioanal. Chem., 405, 3807–3812, 2013.

67. Chabert, N., Ali, O.A., Achouak, W., All ecosystems potentially host electrogenic bacteria. Bioelectrochem., 106, 88–96, 2015.

68. Erable, B., Roncato, M.A., Achouak, W., Bergel, A., Sampling Natural Biofilms: A New Route to Build Efficient Microbial Anodes. Environ. Sci. Technol., 43, 3194–3199, 2009.

69. Cercado-Quezada, B., Delia, M.L., Bergel, A., Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour. Technol., 101, 2748–2754, 2010.

70. Cercado, B., Byrne, N., Bertrand, M., Pocaznoi, D., et al., Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics. Bioresour. Technol., 134, 276–284, 2013.

71. Shi, M.M., Jiang, Y.G., Shi, L., Electromicrobiology and biotechnological applications of the exoelectrogens Geobacter and Shewanella spp. Sci. China-Technological Sci., 62, 1670–1678, 2019.

72. Thirumurthy, M.A., Jones, A.K., Geobacter cytochrome OmcZs binds riboflavin: Implications for extracellular electron transfer. Nanotechnol., 31, 2020.

73. Lovley, D.R., Walker, D.J.F., Geobacter Protein Nanowires. Front. Microbiol., 10, 2019.

74. Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., et al., Shewanella Secretes flavins that mediate extracellular electron transfer. PNAS USA, 105, 3968–3973, 2008.

75. Cheng, Z.H., Xiong, J.R., Min, D., Cheng, L., et al., Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnol. Bioeng. http://doi.org/10.1002/bit.27305, 2020.

76. Engel, C., Schattenberg, F., Dohnt, K., Schroder, U., et al., Long-Term Behavior of Defined Mixed Cultures of Geobacter sulfurreducens and Shewanella oneidensis in Bioelectrochemical Systems. Front. Bioeng. Biotechnol., 7, 2019.

77. Li, Y.R., Wen, L.L., Zhao, H.P., Zhu, L.Z., Addition of Shewanella oneidensis MR-1 to the Dehalococcoides-containing culture enhances the trichloroethene dechlorination. Environ. Int., 133, 2019.

78. Semenec, L., Laloo, A.E., Schulz, B.L., Vergara, I.A., et al., Deciphering the electric code of Geobacter sulfurreducens in cocultures with Pseudomonas aeruginosa via SWATH-MS proteomics. Bioelectrochem., 119, 150–160, 2018.

79. Blanchet, E., Duquenne, F., Rafrafi, Y., Etcheverry, L., et al., Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy & Environ. Sci., 8, 3731–3744, 2015.

80. Jafary, T., Daud, W.R.W., Ghasemi, M., Kim, B.H., et al., Biocathode in microbial electrolysis cell; present status and future prospects. Renewable Sustainable Energy Rev., 47, 23–33, 2015.

81. Kierek-Pearscon, K., Karatan, E., Biofilm development in bacteria. Adv. Appl. Microbiol., Vol 57, 57, 79–111, 2005.

82. Uria, N., Ferrera, I., Mas, J., Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol., 17, 2017.

83. Cardena, R., Moreno-Andrade, I., Buitron, G., Improvement of the bioelectrochemical hydrogen production from food waste fermentation effluent using a novel start-up strategy. J. Chem. Technol. Biotechnol., 93, 878–886, 2018.

84. Cercado, B., Chazaro-Ruiz, L.F., Ruiz, V., Lopez-Prieto, I.D., et al., Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosens. Bioelectron., 50, 373–381, 2013.

85. Zhao, C.-e., Gai, P., Song, R., Chen, Y., et al., Nanostructured material-based biofuel cells: recent advances and future prospects. Chem. Soc. Rev., 46, 1545–1564, 2017.

86. Holzinger, M., Le Goff, A., Cosnier, S., Carbon nanotube/enzyme biofuel cells. Electrochim. Acta, 82, 179–190, 2012.

87. Mano, N., de Poulpiquet, A., O2 Reduction in Enzymatic Biofuel Cells. Chem. Rev., 118, 2392–2468, 2018.

88. Jiang, X., Hu, J., Lieber, A.M., Jackan, C.S., et al., Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells. Nano Lett., 14, 6737–6742, 2014.

89. Moehlenbrock, M.J., Minteer, S.D., Extended lifetime biofuel cells. Chem. Soc. Rev., 37, 1188–1196, 2008.

90. Desmet, C., Marquette, C.A., Blum, L.J., Doumèche, B., Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells. Biosens. Bioelectron., 76, 145–163, 2016.

91. Filip, J., Tkac, J., Is graphene worth using in biofuel cells? Electrochim. Acta, 136, 340–354, 2014.

92. Karimi, A., Othman, A., Uzunoglu, A., Stanciu, L., Andreescu, S., Graphene based enzymatic bioelectrodes and biofuel cells. Nanoscale, 7, 6909–6923, 2015.

93. Le Goff, A., Holzinger, M., Cosnier, S., Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cell. Mol. Life Sci., 72, 941–952, 2015.

94. Rasmussen, M., Abdellaoui, S., Minteer, S.D., Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron., 76, 91–102, 2016.

95. Willner, I., Yan, Y.M., Willner, B., Tel-Vered, R., Integrated Enzyme-Based Biofuel Cells—A Review. Fuel Cells, 9, 7–24, 2009.

96. Holade, Y., Tingry, S., Servat, K., Napporn, T.W., et al., Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells. Catalyst., 7, 2017.

97. Qiu, H.-J., Guan, Y., Luo, P., Wang, Y., Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens. Bioelectron., 89, 85–95, 2017.

98. Babadi, A.A., Bagheri, S., Hamid, S., Bee A., Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosens. Bioelectron., 79, 850–860, 2016.

99. Gross, A.J., Holzinger, M., Cosnier, S., Buckypaper bioelectrodes: Emerging materials for implantable and wearable biofuel cells. Energy & Environ. Sci., 11, 1670–1687, 2018.

100. Walgama, C., Pathiranage, A., Akinwale, M., Montealegre, R., et al., Buckypaper–Bilirubin Oxidase Biointerface for Electrocatalytic Applications: Buckypaper Thickness. ACS Appl. Biomater., 2, 2229–2236, 2019.

101. Gross, A.J., Chen, X., Giroud, F., Abreu, C., et al., A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation. ACS Catal., 7, 4408–4416, 2017.

102. Chen, X., Yin, L., Lv, J., Gross, A.J., et al., Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics. Adv. Funct. Mater., 29, 1905785, 2019.

103. Güven, G., Şahin, S., Güven, A., Yu, E., Power Harvesting from Human Serum in Buckypaper-Based Enzymatic Biofuel Cell. Front. in Energy Res., 4, 2016.

104. Bollella, P., Lee, I., Blaauw, D., Katz, E., A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell. ChemPhysChem, 21, 120–128, 2020.

105. Torrinha, Á., Montenegro, M., Araujo, A., Conjugation of glucose oxidase and bilirubin oxidase bioelectrodes as biofuel cell in a finger-powered microfluidic platform. Electrochim. Acta, 318, 2019.

106. Hou, C., Liu, A., An integrated device of enzymatic biofuel cells and supercapacitor for both efficient electric energy conversion and storage. Electrochim. Acta, 245, 303–308, 2017.

107. Escalona-Villalpando, R.A., Martínez-Maciel, A.C., Espinosa-Ángeles, J.C., Ortiz-Ortega, E., et al., Evaluation of hybrid and enzymatic nanofluidic fuel cells using 3D carbon structures. Int. J. Hydrogen Energy, 43, 11847–11852, 2018.

108. Escalona-Villalpando, R.A., Hasan, K., Milton, R.D., Moreno-Zuria, A., et al., Performance comparison of different configurations of Glucose/O2 microfluidic biofuel cell stack. J. Power Sources, 414, 150–157, 2019.

109. Koushanpour, A., Gamella, M., Guz, N., Katz, E., A Biofuel Cell Based on Biocatalytic Reactions of Glucose on Both Anode and Cathode Electrodes. Electroanal., 29, 950–954, 2017.

110. Du, Y., Ma, F.-X., Xu, C.-Y., Yu, J., et al., Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells. Nano Energy, 61, 533–539, 2019.

111. Zhong, K., Lu, X., Dai, Y., Yang, S., et al., UiO66-NH2 as self-sacrificing template for Fe/N-doped hierarchically porous carbon with high electrochemical performance for oxygen reduction in microbial fuel cells. Electrochim. Acta, 323, 134777, 2019.

112. Guan, Y.-F., Zhang, F., Huang, B.-C., Yu, H.-Q., Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. J. Cleaner Prod., 229, 412–419, 2019.

113. Zhang, G., Zhou, Y., Yang, F., Hydrogen production from microbial fuel cells-ammonia electrolysis cell coupled system fed with landfill leachate using Mo2C/N-doped graphene nanocomposite as HER catalyst. Electrochim. Acta, 299, 672–681, 2019.

114. Guo, W., Chao, S., Chen, Q., Improved power generation using nitrogendoped 3D graphite foam anodes in microbial fuel cells. Bioprocess Biosys. Eng., 43, 143–151, 2020.

115. Li, G., Li, Z., Xiao, X., An, Y., et al., Ultrahigh Electron-Donating Quaternary-N-Doped Reduced Graphene Oxide@Carbon Nanotubes Framework: A Covalently Coupled Catalyst Support for Enzymatic Bioelectrodes. J. Mater. Chem. A, 7, 2019.

116. Yang, L., Zeng, X., Wang, W., Cao, D., Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Adv. Funct. Mater., 28, 1704537, 2018.

117. Wang, H., Wei, L., Liu, J., Shen, J., Hollow bimetal ZIFs derived Cu/Co/N co-coordinated ORR electrocatalyst for microbial fuel cells. Int. J. Hydrogen Energy, 45, 4481–4489, 2020.

118. Kaur, R., Marwaha, A., Chhabra, V.A., Kim, K.-H., Tripathi, S.K., Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renewable and Sustainable Energy Rev., 119, 109551, 2020.

119. Zhong, K., Huang, L., Li, M., Dai, Y., et al., Cobalt/nitrogen-Co-doped nanoscale hierarchically porous composites derived from octahedral metal–organic framework for efficient oxygen reduction in microbial fuel cells. Int. J. Hydrogen Energy, 44, 30127–30140, 2019.

120. Wang, Y., Zhong, K., Huang, Z., Chen, L., et al., Novel g-C3N4 assisted metal organic frameworks derived high efficiency oxygen reduction catalyst in microbial fuel cells. J. Power Sources, 450, 227681, 2020.

121. Xue, W., Zhou, Q., Li, F., Ondon, B.S., Zeolitic imidazolate framework-8 (ZIF-8) as robust catalyst for oxygen reduction reaction in microbial fuel cells. J. Power Sources, 423, 9–17, 2019.

122. Yang, R., Li, K., Lv, C., Cen, B., Liang, B., The exceptional performance of polyhedral porous carbon embedded nitrogen-doped carbon networks as cathode catalyst in microbial fuel cells. J. Power Sources, 442, 227229, 2019.

123. Luo, X., Han, W.L., Ren, H., Zhuang, Q.Z., Metallic Organic Framework-Derived Fe, N, S co-doped Carbon as a Robust Catalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. Energies, 12, 2019.

124. Li, X., Li, D., Zhang, Y., Lv, P., et al., Encapsulation of enzyme by metal–organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy, 68, 104308, 2020.

125. Zhang, F., Wu, X., Gao, J., Chen, Y., et al., Fabrications of metal organic frameworks derived hierarchical porous carbon on carbon nanotubes as efficient bioanode catalysts of NAD+-dependent alcohol dehydrogenase. Electrochim. Acta, 340, 135958, 2020.

126. Hui, Y., Ma, X., Qu, F., Flexible glucose/oxygen enzymatic biofuel cells based on three-dimensional gold-coated nickel foam. J. Solid State Electrochem., 23, 169–178, 2019.

127. Niiyama, A., Murata, K., Shigemori, Y., Zebda, A., Tsujimura, S., High-performance enzymatic biofuel cell based on flexible carbon cloth modified with MgO-templated porous carbon. J. Power Sources, 427, 49–55, 2019.

128. Shen, F., Pankratov, D., Halder, A., Xiao, X., et al., Two-dimensional graphene paper supported flexible enzymatic fuel cells. Nanoscale Adv., 1, 2562–2570, 2019.

129. Huang, X., Zhang, L., Zhang, Z., Guo, S., et al., Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron., 124–125, 40–52, 2019.

130. Zhang, C.X., Haruyama, T., Kobatake, E., Aizawa, M., Evaluation of substi-tuted-1,10-phenanthroline complexes of osmium as mediator for glucose oxidase of Aspergillus niger. Anal. Chim. Acta, 408, 225–232, 2000.

131. Shao, M., Pöller, S., Sygmund, C., Ludwig, R., Schuhmann, W., A lowpotential glucose biofuel cell anode based on a toluidine blue modified redox polymer and the flavodehydrogenase domain of cellobiose dehydrogenase. Electrochem. Comm., 29, 59–62, 2013.

132. Katz, E., Bückmann, Andreas F., Willner, I., Self-Powered Enzyme-Based Biosensors. J. Amer. Chem. Soc., 123, 10752–10753, 2001.

133. Katz, E., Riklin, A., Heleg-Shabtai, V., Willner, I., Bückmann, A.F., Glucose oxidase electrodes via reconstitution of the apo-enzyme: Tailoring of novel glucose biosensors. Anal. Chim. Acta, 385, 45–58, 1999.

134. Bartlett, P.N., Pratt, K.F.E., Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes Part I: Redox mediator entrapped within the film. J. Electroanal. Chem., 397, 61–78, 1995.

135. Ruff, A., Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts. Current Opinion in Electrochem., 5, 66–73, 2017.

136. Dahms, H., Electronic conduction in aqueous solution. J. Phys. Chem., 72, 362–364, 1968.

137. Ruff, I., Friedrich, V.J., Transfer diffusion. I. Theoretical. J. Phys. Chem., 75, 3297–3302, 1971.

138. Ugo, P., Moretto, L.M., Ion-exchange voltammetry at polymer-coated electrodes: Principles and analytical prospects. Electroanal., 7, 1105–1113, 1995.

139. Tauhardt, L., Kempe, K., Knop, K., Altuntaş, E., et al., Linear Polyethyleneimine: Optimized Synthesis and Characterization—On the Way to “Pharmagrade” Batches. Macromol. Chem. Phys., 212, 1918–1924, 2011.

140. Merchant, S.A., Glatzhofer, D.T., Schmidtke, D.W., Effects of Electrolyte and pH on the Behavior of Cross-Linked Films of Ferrocene-Modified Poly(ethylenimine). Langmuir, 23, 11295–11302, 2007.

141. Merchant, S.A., Tran, T.O., Meredith, M.T., Cline, T.C., et al., High-Sensitivity Amperometric Biosensors Based on Ferrocene-Modified Linear Poly(ethylenimine). Langmuir, 25, 7736–7742, 2009.

142. Merchant, S.A., Meredith, M.T., Tran, T.O., Brunski, D.B., et al., Effect of Mediator Spacing on Electrochemical and Enzymatic Response of Ferrocene Redox Polymers. J. Phys. Chem. C, 114, 11627–11634, 2010.

143. Tran, T.O., Lammert, E.G., Chen, J., Merchant, S.A., et al., Incorporation of Single-Walled Carbon Nanotubes into Ferrocene-Modified Linear Polyethylenimine Redox Polymer Films. Langmuir, 27, 6201–6210, 2011.

144. Godman, N.P., DeLuca, J.L., McCollum, S.R., Schmidtke, D.W., Glatzhofer, D.T., Electrochemical Characterization of Layer-By-Layer Assembled Ferrocene-Modified Linear Poly(ethylenimine)/Enzyme Bioanodes for Glucose Sensor and Biofuel Cell Applications. Langmuir, 32, 3541–3551, 2016.

145. González-Guerrero, M.J., del Campo, F.J., Esquivel, J.P., Giroud, F., et al., Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip. J. Power Sources, 326, 410–416, 2016.

146. Hickey, D.P., Reid, R.C., Milton, R.D., Minteer, S.D., A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethyl-ferrocene-modified LPEI. Biosens. Bioelectron., 77, 26–31, 2016.

147. Hickey, D.P., Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation, in: Minteer, S.D. (Ed.), Enzyme Stabilization and Immobilization: Methods and Protocols, pp. 181–191, Springer, New York, 2017.

148. Escalona-Villalpando, R.A., Reid, R.C., Milton, R.D., Arriaga, L.G., et al., Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J. Power Sources, 342, 546–552, 2017.

149. Miyawaki, O., Wingard, L.B., Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group. Biochim. Biophys. Acta (BBA)—General Subjects, 838, 60–68, 1985.

150. Guiseppi-Elie, A., Lei, C., Baughman, R.H., Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnol., 13, 559–564, 2002.

151. Ishida, K., Orihara, K., Muguruma, H., Iwasa, H., et al., Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Anal. Sci., 34, 783–787, 2018.

152. Lovley, D.R., Anaerobes into heavy-metal–dissimilatory metal reduction in anoxic environments. Trends Ecol. Evol., 8, 213–217, 1993.

153. Lovley, D.R., Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiol., 6, 225–231, 2008.

154. Zacharoff, L., Chan, C.H., Bond, D.R., Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochem., 107, 7–13, 2016.

155. Morgado, L., Bruix, M., Pessanha, M., Londer, Y.Y., Salgueiro, C.A., Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity. Biophys. J., l, 99, 293–301, 2010.

156. Liu, Y.M., Fredrickson, J.K., Zachara, J.M., Shi, L., Direct involvement of OmbB, OmaB, and OmcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front. Microbiol., 6, 2015.

157. Vellingiri, A., Song, Y.E., Munussami, G., Kim, C., et al., Overexpression of c-type cytochrome, CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. J. Chem. Technol. Biotechnol., 94, 2115–2122, 2019.

158. Alves, A.S., Costa, N.L., Tien, M., Louro, R.O., Paquete, C.M., Modulation of the reactivity of multiheme cytochromes by site-directed mutagenesis: moving towards the optimization of microbial electrochemical technologies. J. Biol. Inorg. Chem., 22, 87–97, 2017.

159. Alves, M.N., Neto, S.E., Alves, A.S., Fonseca, B.M., et al., Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. Front. Microbiol., 6, 2015.

160. Costa, N.L., Clarke, T.A., Philipp, L.A., Gescher, J., et al., Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. Bioresour. Technol., 255, 308–317, 2018.

161. Xiao, K., Malvankar, N.S., Shu, C.J., Martz, E., et al., Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili. Scientific Reports, 6, 2016.

162. Holmes, D.E., Dang, Y., Walker, D.J.F., Lovley, D.R., The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb. Genomics, 2, 2016.

163. Torres, C.I., Marcus, A.K., Lee, H.S., Parameswaran, P., et al., A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. Fems Microbiol. Rev., 34, 3–17, 2010.

164. Hagos, K., Liu, C., Lu, X.H., Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode. Chin. J. Chem. Eng., 26, 574–582, 2018.

165. Milton, R.D., Giroud, F., Thumser, A.E., Minteer, S.D., Slade, R.C.T., Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide. Chem. Comm., 50, 94–96, 2014.

166. Zebda, A., Renaud, L., Cretin, M., Innocent, C., et al., Membrane less microchannel glucose biofuel cell with improved electrical performances. Sens Actuators B-Chem., 149, 44–50, 2010.

167. Kim, H., Lee, I., Kwon, Y., Kim, B. C., et al., Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications. Biosens. Bioelectron., 26, 3908–3913, 2011.

168. Ortiz-Ortega, E., Goulet, M.-A., Lee, J.W., Guerra-Balcázar, M., et al., A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance. Lab on a Chip, 14, 4596–4598, 2014.

169. Gellett, W., Schumacher, J., Kesmez, M., Le, D., Minteer, S.D., High Current Density Air-Breathing Laccase Biocathode. J. Electrochem. Soc., 157, B557, 2010.

170. Jayashree, R.S., Gancs, L., Choban, E.R., Primak, A., et al., Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell. J. Amer. Chem. Soc., 127, 16758–16759, 2005.

171. Jiang, Y., Su, M., Zhang, Y., Zhan, G.Q., et al., Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrogen Energy, 38, 3497–3502, 2013.

172. Siegert, M., Yates, M.D., Call, D.F., Zhu, X.P., et al., Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chem. Eng., 2, 910–917, 2014.

173. Zhang, Z.Y., Song, Y., Zheng, S.J., Zhen, G.Y., et al., Electro-conversion of carbon dioxide (CO2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. Bioresour. Technol., 279, 339–349, 2019.

174. Nie, H.R., Zhang, T., Cui, M.M., Lu, H.Y., et al., Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys., 15, 14290–14294, 2013.

175. Marshall, C.W., Ross, D.E., Fichot, E.B., Norman, R.S., May, H.D., Long-term Operation of Microbial Electrosynthesis Systems Improves Acetate Production by Autotrophic Microbiomes. Environ. Sci. Technol., 47, 6023–6029, 2013.

176. Pellitero, M.A., Guimera, A., Kitsara, M., Villa, R., et al., Quantitative self-powered electrochromic biosensors. Chem. Sci., 8, 1995–2002, 2017.

177. Monteiro, T., Almeida, M.G., Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems. Critical Rev. Anal. Chem., 49, 44–66, 2019. 178. Cheng, S.A., Xing, D.F., Call, D.F., Logan, B.E., Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ. Sci. Technol., 43, 3953–3958, 2009.

179. Srikanth, S., Maesen, M., Dominguez-Benetton, X., Vanbroekhoven, K., Pant, D., Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour. Technol., 165, 350–354, 2014.

180. Rosenbaum, M., Aulenta, F., Villano, M., Angenent, L.T., Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour. Technol., 102, 324–333, 2011.

181. Villano, M., Aulenta, F., Ciucci, C., Ferri, T., et al., Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol., 101, 3085–3090, 2010.

182. Uchiyama, T., Ito, K., Mori, K., Tsurumaru, H., Harayama, S., Iron-Corroding Methanogen Isolated from a Crude-Oil Storage Tank. Appl. Environ. Microbiol., 76, 1783–1788, 2010.

183. Kato, S., Hashimoto, K., Watanabe, K., Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ. Microbiol., 14, 1646–1654, 2012.

1 *Corresponding author: bcercado@cideteq.mx

Enzyme Commission (EC) numbers classify enzymes according to the reaction they catalyze. Therefore, two different enzymes (from two different organisms, for example) catalyzing the same reaction will share the same EC code.

Branched PEIs are sometimes referred in literature simply as PEIs.

Biofuel Cells

Подняться наверх