Читать книгу Biofuel Cells - Группа авторов - Страница 38

References

Оглавление

1. Cosnier, S., Gross, A.J., Giroud, F., Holzinger, M., Beyond the hype surrounding biofuel cells: What’s the future of enzymatic fuel cells? Curr. Opin. Electrochem., 12, 148, 2018.

2. Meredith, M.T., Minteer, S.D., Biofuel cells: Enhanced enzymatic bioelectrocatalysis. Annu. Rev. Anal. Chem., 5, 157, 2012.

3. Kiran, V., Gaur, B., Microbial fuel cell: Technology for harvesting energy from biomass. Rev. Chem. Eng., 29, 189, 2013.

4. Chaturvedi, V., Verma, P., Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 3:38, 2016.

5. Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I., Microbial fuel cells: From fundamentals to applications, A review. J. Power Sources, 356, 225, 2017.

6. Chaudhuri, S.K., Lovley, D.R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21, 1229, 2003.

7. Kim, N., Choi, Y., Jung, S., Kim, S., Development of Microbial Fuel Cells Using Proteus vulgaris. Bull. Korean Chem. Soc., 21, 44, 2000.

8. Kim, N., Choi, Y., Jung, S., Kim, S., Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng., 70, 109, 2000.

9. Bond, D.R., Lovley, D.R., Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol., 71, 2186, 2005.

10. Holmes, D.E., Bond, D.R., Lovley, D.R., Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol., 70, 1234, 2004.

11. Holmes, D.E., Bond, D.R., O’Neil, R.A., Reimers, C.E., Tender, L.R., Lovley, D.R., Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol., 48, 178, 2004.

12. Min, B., Logan, B.E., Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38, 5809, 2004.

13. Kim, J.R., Jung, S.H., Regan, J.M., Logan, B.E., Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technol., 98, 2568, 2007.

14. Rabaey, K., Van de Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Pham, H.T., Vermeulen, J., Verhaege, M., Lens, P., Verstraete, W., Microbial fuel cells for sulfide removal. Environ. Sci. Technol., 40, 5218, 2006.

15. Niessen, J., Schröder, U., Harnisch, F., Scholz, F., Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett. Appl. Microbiol, 41, 286, 2005.

16. Niessen, J., Harnisch, F., Rosenbaum, M., Schröder, U., Scholz, F., Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem. Commun., 8, 869, 2006.

17. Rezaei, F., Richard, T.L., Brennan, R.A., Logan, B.E., Substrate-enhanced microbial fuel cells for improved remote power generation from sedimentbased systems. Environ. Sci. Technol., 41, 4053, 2007.

18. Zebda, A., Alcaraz, J.-P., Vadgama, P., Shleev, S., Minteer, S.D., Boucher, F., Cinquin, P., Martin, D.K., Challenges for successful implantation of biofuel cells. Bioelectrochemistry, 124, 57, 2018.

19. Chen, T., Barton, S.C., Binyamin, G., Gao, Z., Zhang, Y., Kim, H.-H., Heller, A., A miniature biofuel cell. J. Am. Chem. Soc., 123, 8630, 2001.

20. Palmore, G.T.R., Bertschy, H., Bergens, S.H., Whitesides, G.M., A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem., 443, 155, 1998.

21. Katz, E., MacVittie, K., Implanted biofuel cells operating in vivo—Methods, applications and perspectives—Feature article. Energy Environ. Sci., 6, 2791, 2013.

22. Mano, N., Mao, F., Heller, A., Characteristics of a miniature compartment-less glucose-O2 biofuel cell and İts operation in a living plant. J. Am. Chem. Soc., 125, 6588, 2003.

23. Andoralov, V., Falk, M., Suyatin, D.B., Granmo, M., Sotres, J., Ludwig, R., Popov, V.O., Schouenborg, J., Blum, Z., Shleev, S., Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neurons. Sci. Rep., 3, 3270, 2013.

24. Kilic, M.S., Korkut, S., Hazer, B., Erhan, E., Development and operation of gold and cobalt oxide nanoparticles containing polypropylene based enzymatic fuel cell for renewable fuels. Biosens. Bioelectron, 61, 500, 2014.

25. Korkut, S., Kilic, M.S., Design of a mediated enzymatic fuel cell to generate power from renewable fuel sources. Environ. Technol., 37, 163, 2016.

26. Korkut, S., Kilic, M.S., Uzuncar, S., Hazer, B., Novel Graphene-modified poly(styrene-b-isoprene-b-styrene) enzymatic fuel cell with operation in plant leaves. Anal. Lett., 49, 2322, 2016.

27. Cinquin, P., Gondran, C., Giroud, F., Mazabrard, S., Pellissier, A., Boucher, F., Alcaraz, J.-P., Gorgy, K., Lenouvel, F., Mathé, S., Porcu, P., Cosnier, S., A glucose biofuel cell implanted in rats. Plos One, 5, e10476, 2010.

28. Rasmussen, M., Ritzmann, R.E., Lee, I., Pollack, A.J., Scherson, D., An implantable biofuel cell for a live insect. J. Am. Chem. Soc., 134, 1458, 2012.

29. Halámková, L., Halámek, J., Bocharova, V., Szczupak, A., Alfonta, L., Katz, E., Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc., 134, 5040, 2012.

30. MacVittie, K., Halámek, J., Halámková, L., Southcott, M., Jemison, W.D., Lobel, R., Katz, E., From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ. Sci., 6, 81, 2013.

31. Szczupak, A., Halámek, J., Halámková, L., Bocharova, V., Alfonta, L., Katz, E., Living battery—Biofuel cells operating in vivo in clams. Energ. Environ. Sci., 5, 8891, 2012.

32. Miyake, T., Haneda, K., Nagai, N., Yatagawa, Y., Onami, H., Yoshino, S., Abe, T., Nishizawa, M., Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energ. Environ. Sci., 4, 5008, 2011.

33. Zebda, A., Cosnier, S., Alcaraz, J.-P., Holzinger, M., Le Goff, A., Gondran, C., Boucher, F., Giroud, F., Gorgy, K., Lamraoui, H., Cinquin, P., Single glucose biofuel cells implanted in rats power electronic devices. Sci. Rep., 3, 1516, 2013.

34. Sales, F.C.P.F., Iost, R.M., Martins, M.V.A., Almeida, M.C., Crespilho, F.N., An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip, 13, 468, 2013.

35. Dong, K., Jia, B., Yu, C., Dong, W., Du, F., Liu, H., Microbial fuel cell as power supply for implantable medical devices: A novel configuration design for simulating colonic environment. Biosens. Bioelectron., 41, 916, 2013.

36. Han, Y., Yu, C., Liu, H., A microbial fuel cell as power supply for implantable medical devices. Biosens. Bioelectron., 25, 2156, 2010.

37. Gonzalez-Solino, C., Lorenzo, M., Enzymatic fuel cells: Towards self-powered implantable and wearable diagnostics. Biosensors, 8, 11, 2018.

38. Yin, S., Jin, Z., Miyake, T. Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens. Bioelectron., 141, 111471, 2019.

39. Huang, X., Zhang, L., Zhang, Z., Guo, S., Shang, H., Li, Y., Liu, J., Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron., 124-125, 40, 2019.

40. Jia, W., Wang, X., Imani, S., Bandodkar, A.J., Ramírez, J., Mercier, P.P., Wang, J., Wearable textile biofuel cells for powering electronics. J. Mater. Chem. A, 2, 18184, 2014.

41. Ogawa, Y., Takai, Y., Kato, Y., Kai, H., Miyake, T., Nishizawa, M., Stretchable biofuel cell with enzyme-modified conductive textiles. Biosens. Bioelectron., 74, 947, 2015.

42. Lv, J., Jeerapan, I., Tehrani, F., Yin, L., Silva-Lopez, C.A., Jang, J.-H., Joshuia, D., Shah, R., Liang, Y., Xie, L., Soto, F., Chen, C., Karshalev, E., Kong, C., Yang, Z., Wang, J., Sweat-based wearable energy harvesting-storage hybrid textile devices. Energ. Environ. Sci., 11, 3431, 2018.

43. Miyake, T., Haneda, K., Yoshino, S., Nishizawa, M., Flexible, layered biofuel cells. Biosens. Bioelectron., 40, 45, 2013.

44. Lui, G., Jiang, G., Lenos, J., Lin, E., Fowler, M., Yu, A., Chen, Z., Advanced biowaste-based flexible photocatalytic fuel cell as a green wearable power generator. Adv. Mater. Technol., 2, 1600191, 2017.

45. Feng, R., Tang, F., Zhang, N., Wang, X., Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered temperature sensor. Acs Appl. Mater. Inter., 11, 38616, 2019.

46. Chen, X., Yin, L., Lv, J., Gross, A.J., Le, M., Gutierrez, N.G., Li, Y., Jeerapan, I., Giroud, F., Berezovska, A., O’Reilly, R.K., Xu, S., Cosnier, S., Wang, J., Stretchable and Flexible buckypaper‐based lactate biofuel cell for wearable electronics. Adv. Funct. Mater., 29, 1905785, 2019.

47. Jia, W., Valdés-Ramírez, G., Bandodkar, A.J., Windmiller, J.R., Wang, J., Epidermal biofuel cells: Energy harvesting from human perspiration. Angew. Chem. Int. Edit., 52, 7233, 2013.

48. Reid, R.C., Minteer, S.D., Gale, B.K., Contact lens biofuel cell tested in a synthetic tear solution. Biosens. Bioelectron., 68, 142, 2015.

49. Xiao, X., Siepenkoetter, T., Conghaile, P.Ó., Leech, D., Magner, E., Nanoporous gold-based biofuel cells on contact lenses. Acs Appl. Mater. Inter., 10, 7107, 2018.

50. Bandodkar, A.J., Review-wearable biofuel cells: Past, present and future. J. Electrochem. Soc., 164, H3007, 2017.

*Corresponding author: msametk@beun.edu.tr

Biofuel Cells

Подняться наверх