Читать книгу Machine Learning Algorithms and Applications - Группа авторов - Страница 26

References

Оглавление

1. IHME and HEI State of Global Air/2017, A special report on global exposure to air pollution and its disease burden. State of Global Air, vol. 1, 1–17, 2017.

2. Li, H., Fan, H., Mao, F., A visualization approach to air pollution data exploration—a case study of air quality index (PM2. 5) in Beijing, China. Atmosphere, 7, 3, 35, 2016.

3. Lu, W., Ai, T., Zhang, X., He, Y., An interactive web mapping visualization of urban air quality monitoring data of China. Atmosphere, 8, 8, 148, 2017.

4. Kumar, A., Sinha, R., Bhattacherjee, V., Verma, D. S., & Singh, S., Modeling using K-means clustering algorithm. 1st International Conference on Recent Advances in Information Technology (RAIT), vol. 1, 554–558, IEEE, 2012.

5. Fan, J., Li, Q., Hou, J., Feng, X., Karimian, H., Lin, S., A spatiotemporal prediction framework for air pollution based on deep RNN. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 4, p. 15, 2017.

6. Pereira, R.L., Sousa, P.C., Barata, R., Oliveira, A., Monsieur, G., CitySDK Tourism API-building value around open data. J. Internet Serv. Appl., 6, 1, 1–13, 2015.

7. Adeleke, J.A., Moodley, D., Rens, G., Adewumi, A.O., Integrating statistical machine learning in a semantic sensor web for proactive monitoring and control. Sensors, 17, 4, 807, 2017.

8. Kim, S.H., Choi, J.W., Han, G.T., Air pollution data visualization method based on google earth and KML for Seoul air quality monitoring in realtime. Int. J. Software Eng. Its Appl., 10, 10, 117–128, 2016.

9. Sharma, S., Zhang, M., Gao, J., Zhang, H., Kota, S.H., Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ., 728, 138878, 2020.

10. Mahato, S., Pal, S., Ghosh, K.G., Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ., 730, 139086, 2020.

11. Lloyd, S., Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28, 2, 129–137, 1982.

12. Hochreiter, S. and Schmidhuber, J., Long short-term memory. Neural Comput., 9, 8, 1735–1780, 1997.

13. Hasenkopf, C. A., Flasher, J. C., Veerman, O., & DeWitt, H. L., OpenAQ: A Platform to Aggregate and Freely Share Global Air Quality Data. AGU Fall Meeting Abstracts, 2015, A31D-0097, 2015.

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Vanderplas, J., Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 2825–2830, 2011.

15. Manaswi, N. K., Understanding and working with Keras, Deep Learning with Applications Using Python, vol. 1, pp. 31–43, Springer, 2018.

1 *Corresponding author: priyankjn62@gmail.com

Corresponding author: gagandeep.kaur@jiit.ac.in

Machine Learning Algorithms and Applications

Подняться наверх