Читать книгу Machine Learning Algorithms and Applications - Группа авторов - Страница 38
2.6 Conclusion
ОглавлениеIn this paper, CNN-based silkworm egg counting and classification model that overcomes many issues found with conventional image processing techniques is explained. The main contribution of this paper is in fourfolds. First, a method to generalize the method of capturing silkworm egg sheet data in a digital format using normal paper scanners rather than designing extra hardware, which eliminates the need for additional light sources to provide uniform illumination while recording data and maintain high repeatability.
Second, the scanned digital data can be transformed into standard size by using key markers stamped onto the egg sheets before scanning. This allows the user to resize the dimension of digital data and later use it in an image processing algorithm or CNN without introducing dimensionality error.
A dataset has been put together containing over 400K images representing different features of silkworm eggs. The CNN and other models that need a lot of training, testing and validation data can easily use this dataset to skip the data generation phase which is the third contribution.
Fourth, a CNN model has been trained using the dataset that is designed to predict the egg class and count the number of eggs per egg sheet. With over 97% accuracy the model outperforms many conventional approaches with only 4 hidden layers and a fully connected layer.
The model performs accurately in quantifying (counting) different breed silkworm eggs, but new datasets become necessary to predict the class labels for new silkworm breed for which the model is not trained. This is because HC class eggs have high pixel intensity throughout the egg surface while UHC has dark pixels at the center surrounded with high-value pixels for the egg breed used on our experiment. This color feature may not be the same as other breed silkworm eggs, and hence, additional data becomes important that can be fed into already trained CNN using transfer learning. Also, the egg location model performs well with new breed data, the training dataset to determining the class of eggs can be easily generated with minimal human effort.