Читать книгу Global Drought and Flood - Группа авторов - Страница 53

REFERENCES

Оглавление

1 AMS (2004). AMS statement on meteorological drought Bulletin of the American Meteorological Society, 85, 771–773.

2 Biancamaria, S., Lettenmaier, D.P., & Pavelsky, T.M. (2016). The SWOT mission and its capabilities for land hydrology. In Cazenave, A., Champollion, N., Benveniste, J., Chen, J. (Eds.), Remote Sensing and Water Resources (pp. 117–147). Springer.

3 Bierkens, M.F. (2015). Global hydrology 2015: State, trends, and directions. Water Resources Research, 51(7), 4923–4947.

4 Birkett, C. (1994). Radar altimetry: a new concept in monitoring lake level changes. Eos, Transactions American Geophysical Union, 75(24), 273–275.

5 Birkett, C. (2000). Synergistic remote sensing of Lake Chad: Variability of basin inundation. Remote sensing of environment, 72(2), 218–236.

6 Bondeau, A., Smith, P.C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., et al. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13(3), 679–706.

7 Bryant, R.G. (1999). Application of AVHRR to monitoring a climatically sensitive playa. Case study: Chott el Djerid, southern Tunisia. Earth Surface Processes and Landforms, 24(4), 283–302.

8 Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., et al. (2018). A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Science, 23, 669–690.

9 Che, X., Feng, M., Jiang, H., Song, B., & Jia, B. (2015). Downscaling MODIS surface reflectance to improve water body extraction. Advances in Meteorology, 2015, Article ID 424291. https://doi.org/10.1155/2015/424291

10 Crétaux, J., Biancamaria, S., Arsen, A., Bergé‐Nguyen, M.,. & Becker, M. (2015), Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin, Environmental Research Letters, 10, 015002.

11 Crétaux, J.‐F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé‐Nguyen, M., et al. (2011). SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data. Advances in Space Research, 47(9), 1497–1507.

12 Dai, A. (2013). Increasing drought under global warming in observations and models, Nature Climate Change, 3(1), 52.

13 Döll, P., Kaspar, F., & Lehner, B. (2003). A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270(1–2), 105–134.

14 Duan, Z., & Bastiaanssen, W. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134, 403–416.

15 Fekete, B.M., Robarts, R.D., Kumagai, M., Nachtnebel, H.‐P., Odada, E., & Zhulidov, A.V. (2015). Time for in situ renaissance. Science, 349(6249), 685–686.

16 Friedrich, K., Grossman, R.L., Huntington, J., Blanken, P.D., Lenters, J., Holman, K.D., et al. (2018). Reservoir evaporation in the Western United States: current science, challenges, and future needs. Bulletin of the American Meteorological Society, 99(1), 167–187.

17 Fu, L.‐L., & Smith, R.D. (1996). Global ocean circulation from satellite altimetry and high‐resolution computer simulation. Bulletin of the American Meteorological Society, 77(11), 2625–2636.

18 Gao, H. (2015). Satellite remote sensing of large lakes and reservoirs: From elevation and area to storage. Wiley Interdisciplinary Reviews: Water, 2(2), 147–157.

19 Gao, H., Birkett, C.,& Lettenmaier, D.P. (2012). Global monitoring of large reservoir storage from satellite remote sensing. Water Resources Research, 48(9). https://doi.org/10.1029/2012WR012063

20 Gao, H., Bohn, T., Podest, E., McDonald, K., & Lettenmaier, D. (2011). On the causes of the shrinking of Lake Chad. Environmental Research Letters, 6(3), 034021.

21 Gibbs, W.J., & Maher, J.V. (1967). Rainfall deciles as drought indicators (Bulletin 48). Melbourne, Australia: Bureau of Meteorology.

22 Gleick, P.H. (2003). Global freshwater resources: soft‐path solutions for the 21st century. Science, 302(5650), 1524–1528.

23 Gommes, R., & Petrassi, F. (1994). Rainfall variability and drought in Sub‐Saharan Africa since 1960 (Working Paper No. 9). Agrometeorology Series, Food and Agriculture Organization of the United Nations.

24 Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., et al. (2014). Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences, 111(9), 3251–3256.

25 Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., et al. (2008). An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrology and Earth System Sciences, 12(4), 1007–1025.

26 Harris, A., & Mason, I. (1989). Lake area measurement using AVHRR A case study. International Journal of Remote Sensing, 10(4–5), 885–895.

27 Heim Jr, R.R. (2002). A review of twentieth‐century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149–1165.

28 Heim Jr, R.R., & Brewer, M.J. (2012). The global drought monitor portal: The foundation for a global drought information system. Earth Interactions, 16(15), 1–28.

29 Hunt, E.D., Hubbard, K.G., Wilhite, D.A., Arkebauer, T.J., & Dutcher, A.L. (2009). The development and evaluation of a soil moisture index. International Journal of Climatology, 29(5), 747–759.

30 Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering and Remote Sensing, 75(11), 1307–1317.

31 Kugler, Z., & De Groeve, T. (2007). The global flood detection system (EUR 23303 EN, pp. 1–45). Luxembourg: European Union Joint Research Committee Scientific and Technical Reports.

32 Kumar, S.V., Zaitchik, B.F., Peters‐Lidard, C.D., Rodell, M., Reichle, R., Li, B., et al. (2016). Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data Assimilation System. Journal of Hydrometeorology, 17(7), 1951–1972.

33 Lawford, R., Strauch, A., Toll, D., Fekete, B., & Cripe, D. (2013). Earth observations for global water security. Current Opinion in Environmental Sustainability, 5(6), 633–643.

34 Lehner, B., Liermann, C.R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., et al. (2011). High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management. Frontiers in Ecology and the Environment, 9(9), 494–502.

35 Liang, X., Lettenmaier, D.P., Wood, E.F., & Burges, S.J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7), 14415–14428.

36 Li, H.‐Y., Leung, L.R. Getirana, A., Huang, M., Wu, H., Xu, Y., et al. (2015). Evaluating global streamflow simulations by a physically based routing model coupled with the community land model. Journal of Hydrometeorology, 16(2), 948–971.

37 Li, Y., Gao, H., Jasinski, M.F., Zhang, S., & Stoll, J.D. (2019). Deriving high‐resolution reservoir bathymetry from ICESat‐2 prototype photon‐counting Lidar and Landsat imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(10), 7883–7893. doi: 10.1109/TGRS.2019.2917012

38 Long, D., Scanlon, B.R., Longuevergne, L., Sun, A.Y., Fernando, D.N., & Save, H. (2013). GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophysical Research Letters, 40(13), 3395–3401.

39 Lu, S., Wu, B., Yan, N., & Wang, H. (2011). Water body mapping method with HJ‐1A/B satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 13(3), 428–434.

40 Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csathó, B., et al. (2017). The Ice, Cloud, and land Elevation Satellite‐2 (ICESat‐2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260–273.

41 Mason, I., Harris, A., Moody, J., Birkett, C., Cudlip, W., & Vlachogiannis, D. (1992). Monitoring wetland hydrology by remote sensing: a case study of the Sudd using infrared imagery and radar altimetry (SP‐341). Paper presented at Proceedings of the Central Symposium of the International Space Year Conference, Munich, European Space Agency.

42 Maulik, U., & Saha, I. (2010). Automatic fuzzy clustering using modified differential evolution for image classification. IEEE Transactions on Geoscience and Remote Sensing, 48(9), 3503–3510.

43 McCabe, M.F., Rodell, M., Alsdorf, D.E., Miralles, D.G., Uijlenhoet, R., Wagner, W., et al. (2017). The future of Earth observation in hydrology. Hydrology and Earth System Sciences, 21(7), 3879–3814. https://doi.org/10.5194/hess‐2017–54

44 McKee, T.B. (1995). Drought monitoring with multiple time scales. Paper presented at Proceedings of 9th Conference on Applied Climatology, Boston.

45 McKee, T.B., Doesken, N.J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Paper presented at Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society Boston, MA.

46 Melo, D. de C.D., Scanlon, B.R., Zhang, Z., Wendland, E., & Yin, L. (2016). Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south‐eastern Brazil. Hydrology & Earth System Sciences, 20, 4673–4688.

47 Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W.. Lettenmaier, D.P. & Stouffer, R.J. (2008). Stationarity is dead: Whither water management? Science, 319(5863), 573–574.

48 Mishra, A., Vu, T., Veettil, A.V., & Entekhabi, D. (2017). Drought monitoring with soil moisture active passive (SMAP) measurements. Journal of Hydrology, 552, 620–632.

49 Mishra, A K., & Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology, 391(1), 202–216.

50 Mo, K.C. (2008). Model‐based drought indices over the United States. Journal of Hydrometeorology, 9(6), 1212–1230.

51 Mu, Q., Zhao, M., Kimball, J.S., McDowell, N.G., & Running, S.W. (2013). A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94(1), 83–98.

52 Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring, Agricultural and Forest Meteorology, 133(1–4), 69–88.

53 Palmer, W.C. (1965). Meteorological drought (Research Paper 45). Silver Spring, MD: Weather Bureau, U.S. Department of Commerce.

54 Palmer, W.C. (1968). Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise, 21(4), 156–161.

55 Pekel, J.‐F., Cottam, A., Gorelick, N., & Belward, A.S. (2016). High‐resolution mapping of global surface water and its long‐term changes. Nature, 540(7633), 418.

56 Phan, V.H., Lindenbergh, R., & Menenti, M. (2012). ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation, 17, 12–22.

57 Reynolds, J. F., Smith, D.M.S., Lambin, E.F., Turner, B., Mortimore, M., Batterbury, S.P., et al. (2007). Global desertification: building a science for dryland development. Science, 316(5826), 847–851.

58 Seeber, C., Hartmann, H., Xiang, W., & King, L. (2010). Land use change and causes in the Xiangxi catchment, Three Gorges Area derived from multispectral data. Journal of Earth Science, 21(6), 846–855.

59 Shafer, B. (1982). Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. Paper presented at Proceedings of the 50th Annual Western Snow Conference, Colorado State University, Fort Collins.

60 Sheffield, J., & Wood, E.F. (2008). Projected changes in drought occurrence under future global warming from multi‐model, multi‐scenario, IPCC AR4 simulations. Climate dynamics, 31(1), 79–105.

61 Sheffield, J., Wood, E.F., Chaney, N., Guan, K., Sadri, S., Yuan, X., et al. (2014). A drought monitoring and forecasting system for sub‐Sahara African water resources and food security. Bulletin of the American Meteorological Society, 95(6), 861–882.

62 Shukla, S., & Wood, A.W. (2008). Use of a standardized runoff index for characterizing hydrologic drought, Geophysical Research Letters, 35(2). https://doi.org/10.1029/2007GL032487

63 Stacke, T., & Hagemann, S. (2012). Development and evaluation of a global dynamical wetlands extent scheme. Hydrology and Earth System Sciences, 16(8), 2915–2933.

64 Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., et al. (2002). The drought monitor. Bulletin of the American Meteorological Society, 83(8), 1181–1190.

65 Tang, Q., Gao, H., Yeh, P., Oki, T., Su, F., & Lettenmaier, D.P. (2010). Dynamics of terrestrial water storage change from satellite and surface observations and modeling. Journal of Hydrometeorology, 11(1), 156–170.

66 Thomas, A.C., Reager, J.T., Famiglietti, J.S., & Rodell, M. (2014). A GRACE‐based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters, 41(5), 1537–1545.

67 Thomas, B.F., Famiglietti, J.S., Landerer, F.W., Wiese, D.N., Molotch, N.P., & Argus, D.F. (2017). GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment, 198, 384–392.

68 Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17.

69 TWDB (2017). March 2017 reservoir storage. Austin, TX: Texas Water Development Board. https://www.twdb.texas.gov/publications/reports/waterconditions/twc_pdf_archives/2017/twcMar2017.pdf

70 Van Loon, A.F. (2015). Hydrological drought explained, WIREs Water, 2(4), 359–392.

71 Van Rooy, M. (1965). A rainfall anomaly index independent of time and space. Notos, 14(43), 6.

72 Vicente‐Serrano, S.M., Beguería, S., & López‐Moreno, J.I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718.

73 Vicente‐Serrano, S.M., López‐Moreno, J.I., Beguería, S., Lorenzo‐Lacruz, J., Azorin‐Molina, C., & Morán‐Tejeda, E. (2011). Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, 17(2), 318–332.

74 Voisin, N., Hejazi, M.I., Leung, L.R., Liu, L., Huang, M., Li, H.Y., & Tesfa, T. (2017). Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model. Water Resources Research, 53(5), 4253–4270.

75 Vörösmarty, C.J., Moore, B., Grace, A.L., Gildea, M.P., Melillo, J.M., Peterson, B.J., et al. (1989). Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles, 3(3), 241–265.

76 Wada, Y., Bierkens, M.F., Roo, A. de, Dirmeyer, P.A., Famiglietti, J.S., Hanasaki, N., et al. (2017). Human–water interface in hydrological modelling: current status and future directions. Hydrology and Earth System Sciences, 21(8), 4169–4193.

77 Wada, Y., Van Beek, L., Viviroli, D., Dürr, H.H., Weingartner, R., & Bierkens, M.F. (2011). Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 47(7). https://doi.org/10.1029/2010WR009792

78 Wang, J., Sheng, Y., & Tong, T.S.D. (2014). Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sensing of Environment, 152, 251–269.

79 Wilhite, D.A., & Glantz, M.H. (1985). Understanding the drought phenomenon: the role of definitions. Water international, 10(3), 111–120.

80 Wisser, D., Frolking, S., Douglas, E.M., Fekete, B.M., Vörösmarty, C.J., & Schumann, A.H. (2008). Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters, 35(24). https://doi.org/10.1029/2008GL035296

81 Xia, Y., Ek, M.B., Peters‐Lidard, C.D., Mocko, D., Svoboda, M., Sheffield, J., & Wood, E.F. (2014). Application of USDM statistics in NLDAS‐2: Optimal blended NLDAS drought index over the continental United States. Journal of Geophysical Research: Atmospheres, 119(6), 2947–2965.

82 Yao, Y., Liang, S., Qin, Q., & Wang, K. (2010). Monitoring drought over the conterminous United States using MODIS and NCEP Reanalysis‐2 data. Journal of Applied Meteorology and Climatology, 49(8), 1665–1680.

83 Yigzaw, W., Li, H.Y., Demissie, Y., Hejazi, M.I., Leung, L.R., Voisin, N., & Payn, R. (2018). A new global storage‐area‐depth dataset for modeling reservoirs in land surface and earth system models. Water Resources Research, 54(12), 10,372–10,386.

84 Zhang, G., Xie, H., Kang, S., Yi, D., & Ackley, S.F. (2011). Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sensing of Environment, 115(7), 1733–1742.

85 Zhang, S., & Gao, H. (2016). A novel algorithm for monitoring reservoirs under all‐weather conditions at a high temporal resolution through passive microwave remote sensing. Geophysical Research Letters, 43, 8052–8059.

86 Zhang, S., Gao, H., & Naz, B.S. (2014). Monitoring reservoir storage in South Asia from multisatellite remote sensing. Water Resources Research, 50(11), 8927–8943.

87 Zhao, G., & Gao H. (2018). Automatic correction of contaminated images for assessment of reservoir surface area dynamics. Geophysical Research Letters, 45(12), 6092–6099.

88 Zhao, G., & Gao, H. (2019a). Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches. Remote Sensing of Environment, 226, 109–124.

89 Zhao, G., & Gao, H. (2019b). Towards global hydrological drought monitoring using remotely sensed reservoir surface area. Geophysical Research Letters, 46(22), 13027–13035.

90 Zhao, G., Gao, H., Naz, B.S., Kao, S.‐C., & Voisin, N. (2016). Integrating a reservoir regulation scheme into a spatially distributed hydrological model. Advances in Water Resources, 98, 16–31.

91 Zhou, T., Nijssen, B., Gao, H., & Lettenmaier, D.P. (2016), The contribution of reservoirs to global land surface water storage variations. Journal of Hydrometeorology. 17, 309–325.

Global Drought and Flood

Подняться наверх