Читать книгу Energy Storage - Группа авторов - Страница 15
1.2 Concentrating Solar Power (CSP) Technology
ОглавлениеSolar energy is the most viable and abundant renewable energy source. The Concentrating Solar Power (CSP) technology is promising especially for countries having an abundance of solar resources. Implementation of CSP technology can secure the energy supply and reduce carbon footprint, resulting in achieving sustainable development goals. A Concentrating Solar Power (CSP) system includes a concentrator (to concentrate solar radiation), a receiver (converts solar radiation to thermal energy) and a power block (with the turbine to convert thermal energy to electrical energy). A CSP system receives and concentrates sunlight followed by converting solar radiation to thermal energy (Shouman and Khattab, 2015; Tian and Zhao, 2013; Cavallaro, 2009; Barlev et al., 2011; Desai et al., 2014; Islam et al., 2018). The thermal energy is then carried by a fluid called Heat Transfer Fluid (HTF) to the power block for power generation.
The CSP concept materialized on an industry scale in the 1980s in California where nine separate Solar Electric Generating Systems (SEGS) based on parabolic trough receiver, totalling 354 MWe of installed capacity were constructed. These systems used oil as the HTF involving parabolic trough receivers based on steam turbines for power generation. As observed from the data provided by NREL, the growth of solar power plants based on CSP concepts has been led predominantly by Spain followed by the United States. New and ongoing CSP projects are also being developed in other countries as shown in Figure 1.1. As per the data provided by NREL, currently 188 worldwide CSP-based power plants are documented, out of which 71% are operational [see Figure 1.2].
Figure 1.1 Number of CSP projects in various countries
(source: NREL).
Figure 1.2 Current status of worldwide CSP plants
(data source: NREL).