Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
Группа авторов
Spectroscopy for Materials Characterization
Читать книгу Spectroscopy for Materials Characterization - Группа авторов - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
74
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Spectroscopy for Materials Characterization
Оглавление
Страница 1
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Страница 7
Страница 8
Страница 9
Страница 10
1 Radiation–Matter Interaction Principles: Optical Absorption and Emission in the Visible‐Ultraviolet Region
1.1 Empirical Aspects of Radiation–Matter Interaction
1.1.1 Optical Absorption: The Lambert–Beer Law
1.1.2 Emission: Fluorescence and Phosphorescence
1.2 Microscopic Point of View
1.2.1 Einstein Coefficients
1.2.2 Oscillator Strength, Lifetime, Quantum Yield
1.2.3 Vibronic States: Homogeneous and Inhomogeneous Lineshape
1.2.4 Jablonski Energy Level Diagram: Permitted and Forbidden Transitions
1.2.5 Excited States Rate Equations
1.3 Instrumental Setups
1.3.1 Typical Block Diagram of Spectrometers
1.3.2 Light Sources
1.3.3 Dispersion Elements: Gratings and Resolution Power
1.3.4 Detectors: Photodiode, Photomultiplier, Charge Coupled Device
1.4 Case Studies
1.4.1 Optical Absorption in Visible‐Ultraviolet Range
1.4.1.1 Scanning Device (Bandwidth and Scanning Speed Effects)
1.4.1.2 CCD Fiber Optic Device
1.4.2 Photoluminescence
1.4.2.1 Emission and Excitation Spectra: Energy Levels Reconstruction
References
2 Time‐Resolved Photoluminescence
2.1 Introduction to Photoluminescence Spectroscopy
2.1.1 Photoluminescence Properties Related to Points Defects: Electron–Phonon Coupling
2.1.2 Optical Transitions: The Franck–Condon Principle
2.1.3 Zero‐Phonon Line
2.1.4 Phonon Line Structure
2.1.5 Vibrational Structure
2.1.6 Inhomogeneous Effects
2.2 Experimental Methods and Analysis 2.2.1 Time‐Resolved Luminescence
2.2.2 Site‐Selective Luminescence
2.2.3 Basic Design of Experimental Setup: Pulsed Laser Sources; Monochromators; Detectors
2.2.3.1 Tunable Laser
2.2.3.2 Time‐Resolved Detection System: Spectrograph and Intensified CCD Camera
2.3 Case Studies: Luminescent Point Defects in Amorphous SiO
2
2.3.1 Emission Spectra and Lifetime Measurements
2.3.2 Zero‐Phonon Line Probed by Site‐Selective Luminescence
References
3 Ultrafast Optical Spectroscopies
3.1 Femtosecond Spectroscopy: An Overview
3.2 Ultrafast Optical Pulses 3.2.1 General Properties
3.2.1.1 Dispersion Effect: Group Velocity Dispersion
3.2.2 Nonlinear Optics: Basis and Applications 3.2.2.1 Second Harmonic Generation and Sum Frequency Generation
3.2.2.2 Noncollinear Optical Parametric Amplifier
3.2.2.3 Supercontinuum Generation
3.3 Transient Absorption Spectroscopy
3.3.1 The Experimental Method
3.3.2 Typical Experimental Setups
3.3.3 Data Analysis and Interpretation
3.4 Ultrafast Fluorescence Spectroscopies
3.4.1 FLUC: The Experimental Method
3.4.2 FLUC: Typical Experimental Setups
3.4.3 FLUC: Data Analysis and Interpretation
3.4.4 Kerr‐Based Femtosecond Fluorescence Spectroscopy
3.5 Femtosecond Stimulated Raman Spectroscopy
3.5.1 The Experimental Method
3.5.2 Typical Experimental Setups
3.5.3 Data Analysis and Interpretation
3.6 Case Studies 3.6.1 Ultrafast Relaxation Dynamics of Molecules in Solution Phase
3.6.2 Relaxation of Excited Charge Carriers and Excitons in Semiconductor Nanoparticles
3.6.3 Ultrafast Relaxation Dynamics of Carbon‐based Nanomaterials
References
{buyButton}
Подняться наверх