Читать книгу Physiology of Salt Stress in Plants - Группа авторов - Страница 44

References

Оглавление

1 Abbasi, F.M. and Komatsu, S. (2004). A proteomic approach to analyze salt‐responsive proteins in rice leaf sheath. Proteomics 4: 2072–2081.

2 Babu, G.A. and Reddy, S.M. (2011). Diversity of arbuscular mycorrhizal fungi associated with plants growing in fly ash pond and their potential role in ecological restoration. Curr. Microbiol. 63: 273–280.

3 Bao, H., Chen, X., Lv, S. et al. (2015). Virus‐induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ‐aminobutyric acid metabolic pathway. Plant Cell Environ. 38: 600–613.

4 Barrett‐Lennard, E.G. (2002). Restoration of saline land through revegetation. Agric. Water Manag. 53: 213–226.

5 Bose, J., Munns, R., Shabala, S. et al. (2017). Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J. Exp. Bot. 68: 3129–3143.

6 Busch, K., Piehler, J., and Fromm, H. (2000). Plant succinic semialdehyde dehydrogenase: dissection of nucleotide binding by surface plasmon resonance and fluorescence spectroscopy. Biochemistry 39: 10110–10117.

7 Chattopadhyay, A., Subba, P., Pandey, A. et al. (2011). Analysis of the grasspea proteome and identification of stress‐responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72: 1293–1307.

8 Chaudhary, D.R., Rathore, A.P., and Jha, B. (2018). Aboveground, belowground biomass and nutrients pool in Salicornia brachiata at coastal area of India: interactive effects of soil characteristics. Ecol. Res. 33: 1207–1218.

9 Che‐Othman, M.H., Millar, A.H., and Taylor, N.L. (2017). Connecting salt stress signalling pathways with salinity‐induced changes in mitochondrial metabolic processes in C3 plants. Plant Cell Environ. 40: 2875–2905.

10 Chiang, C.P., Yim, W.C., Sun, Y.H. et al. (2016). Identification of ice plant (Mesembryanthemum crystallinum L.) microRNAs using RNA‐seq and their putative roles in high salinity responses in seedlings. Front. Plant Sci. 7: 1143.

11 Choi, W.G., Toyota, M., Kim, S.H. et al. (2014). Salt stress‐induced Ca2+ waves are associated with rapid, long‐distance root‐to‐shoot signaling in plants. Proc. Natl. Acad. Sci. U. S. A. 111: 6497–6502.

12 Christmann, A., Grill, E., and Huang, J. (2013). Hydraulic signals in long‐distance signaling. Curr. Opin. Plant Biol. 16: 203–300.

13 Dassanayake, M. and Larkin, J.C. (2017). Making plants break a sweat: the structure, function, and evolution of plant salt glands. Front. Plant Sci. 8: 1–20.

14 Dumont, S. and Rivoal, J. (2019). Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Front. Plant Sci. 10: 1–16.

15 Fahy, D., Sanad, M.N.M.E., Duscha, K. et al. (2017). Impact of salt stress, cell death, and autophagy on peroxisomes: Quantitative and morphological analyses using small fluorescent probe N‐BODIPY. Sci. Rep. 7: 1–17.

16 FAO (2005). Salt‐Affected Soils from Sea Water Intrusion: Strategies for Rehabilitation and Management. Report of the regional workshop on salt‐affected soils from sea water intrusion: Strategies for rehabilitation and management, RAP PUBLICATION 2005/11. Bangkok, Thailand 6 pp.

17  Fernie, A.R., Carrari, F., and Sweetlove, L.J. (2004). Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7: 254–261.

18 Finazzi, G., Petroutsos, D., Tomizioli, M. et al. (2015). Ions channels/transporters and chloroplast regulation. Cell Calcium 58: 86–97.

19 Flowers, T.J. (1972). Salt tolerance in Suaeda maritima (L.) dum: the effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J. Exp. Bot. 23: 310–321.

20 Flowers, T.J. and Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytol. 179: 945–963.

21 Flowers, T.J., Troke, P.F., and Yeo, A.R. (1977). The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–121.

22 Flowers, T.J., Munns, R., and Colmer, T.D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 115: 419–431.

23 Fricke, W., Akhiyarova, G., Veselov, D., and Kudoyarova, G. (2004). Rapid and tissue‐specific changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Bot. 55: 1115–1123.

24 Gallagher, J.L. (1985). Halophytic crops for cultivation at seawater salinity. Plant Soil 89: 323–326.

25 Galvan‐Ampudia, C.S., Julkowska, M.M., Darwish, E. et al. (2013). Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23: 2044–2050.

26 Ghosh, S., Bagchi, S., and LahiriMajumder, A. (2001). Chloroplast fructose‐1,6‐bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Sci. 160: 1171–1181.

27 Glenn, E.P., O’Leary, J.W., Watson, M.C. et al. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251: 1065–1067.

28 Glenn, E.P., Brown, J.J., and Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. CRC Crit. Rev. Plant Sci. 18: 227–255.

29 Glenn, E.P., Mckeon, C., Gerhart, V. et al. (2009). Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city. Landsc Urban Plan 89: 57–64.

30 Hamilton, E.W. and Heckathorn, S.A. (2001). Mitochondrial adaptations to NaCl. Complex I is protected by anti‐oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 126: 1266–1274.

31 He, Y., Fu, J., Yu, C. et al. (2015). Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J. Exp. Bot. 66: 6877–6889.

32 Hedrich, R. and Shabala, S. (2018). Stomata in a saline world. Curr. Opin. Plant Biol. 46: 87–95.

33 Hernández, J.A., Olmos, E., Corpas, F.J. et al. (1995). Salt‐induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105: 151–167.

34 Hong, M., Li, N., Li, J. et al. (2019). Adenosine monophosphate‐activated protein kinase signaling regulates lipid metabolism in response to salinity stress in the red‐eared slider turtle Trachemys scripta elegans. Front. Physiol. 10: 1–11.

35 Ishikawa, T., Cuin, T.A., Bazihizina, N., and Shabala, S. (2018). Xylem ion loading and its implications for plant abiotic stress tolerance. Adv. Bot. Res. 87: 267–301.

36 Jacoby, R.P., Taylor, N.L., and Millar, A.H. (2011). The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci. 16: 614–623.

37 Jajoo, A., Dube, A., and Bharti, S. (1994). Mg2+‐induced lipid phase transition in thylakoid membranes is reversed by anions. Biochem. Biophys. Res. Commun. 202: 1724–1730.

38  Jajoo, A., Bharti, S., and Kawamori, A. (2005). Interactions of chloride and formate at the donor and the acceptor side of photosystem II. J. Bioenerg. Biomembr. 37: 49–54.

39 Jeschke, W.D., Wolf, O., and Hartung, W. (1992). Effect of NaCI salinity on flows and partitioning of C, N, and mineral ions in whole plants of white lupin, Lupinus albus L. J. Exp. Bot. 43: 777–788.

40 Jha, A., Joshi, M., Yadav, N.S. et al. (2011). Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol. Biol. Rep. 38: 1965–1973.

41 Jordan, F.L., Yoklic, M., Morino, K. et al. (2009). Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district. Agric. For. Meteorol. 149: 899–912.

42 Kant, S., Kant, P., Raveh, E., and Barak, S. (2006). Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyteproline and tight control of Na+ uptake in T. halophila. Plant Cell Environ. 29: 1220–1234.

43 Kazachkova, Y., Batushansky, A., Cisneros, A. et al. (2013). Growth platform‐dependent and ‐independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress. Plant Physiol. 162: 1583–1598.

44 Kim, D.W., Rakwal, R., Agrawal, G.K. et al. (2005). A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26: 4521–4539.

45 Kinnersley, A.M. and Turano, F.J. (2010). Gamma Aminobutyric Acid (GABA) and plant responses to stress. CRC Crit. Rev. Plant Sci. 2689: 37–41.

46 Kirchhoff, H., Hall, C., Wood, M. et al. (2011). Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. U. S. A. 108: 20248–20253.

47 Kosova, K., Prasil, I.T., and Vitamvas, P. (2013). Protein contribution to plant salinity response and tolerance acquisition. Int. J. Mol. Sci. 14: 6757–6789.

48 Kumari, N., Malik, K., Rani, B. et al. (2019). Insights in the physiological, biochemical and molecular basis of salt stress tolerance in plants. In: Microorganisms in Saline Environments: Strategies and Functions (eds. B. Giri and A. Verma), 353–374. Switzerland: Springer Nature.

49 Lambers, H., Chapin, F.S., and Pons, T.L. (2008). Respiration. In: Plant Physiological Ecology, 2e, 101–150. New York: Springer.

50 Mishra, A. and Tanna, B. (2017). Halophytes: potential resources for salt stress tolerance genes and promoters. Front. Plant Sci. 8: 1–10.

51 Mitsuya, S., El‐Shami, M., Sparkes, I.A. et al. (2010). Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCI tolerance in Arabidopsis thaliana. PLoS One 5: e9408.

52 Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.

53 Munns, R., Guo, J., Passioura, J.B., and Cramer, G.R. (2000). Leaf water status controls day‐time but not daily rates of leaf expansion in salt‐treated barley. Aust. J. Plant Physiol. 27: 949–957.

54 Munns, R., James, R.A., Xu, B. et al. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 30: 360–364.

55 Munns, R., Day, D.A., Fricke, W. et al. (2020). Energy costs of salt tolerance in crop plants. New Phytol. 225: 1072–1090.

56  Murata, N., Takahashi, S., Nishiyama, Y., and Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochem.Biophys. Acta. ‐ Bioenerg. 1767: 414–421.

57 Ondrasek, G., Rengel, Z., and Veres, S. (2011). Soil salinisation and salt stress in crop production. In: Abiotic Stress in Plants ‐ Mechanisms and Adaptations (ed. A. Shanker), 171–190. Croatia: InTech.

58 Pagliano, C., La Rocca, N., Andreucci, F. et al. (2009). The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen‐evolving complex without loss of functional activity. Ann. Bot. 103: 505–515.

59 Panta, S., Flowers, T., Lane, P. et al. (2014). Halophyte agriculture: success stories. Environ. Exp. Bot. 107: 71–83.

60 Panta, S., Flowers, T., Doyle, R. et al. (2016). Growth responses of Atriplex lentiformis and Medicago arborea in three soil types treated with saline water irrigation. Environ. Exp. Bot. 128: 39–50.

61 Pattanayak, G.K. and Tripathy, B.C. (2002). Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 291: 921–924.

62 Pavlovic, I., Mlinaric, S., Tarkowska, D. et al. (2019). Early Brassica crops responses to salinity stress: a comparative analysis between chinese cabbage, white cabbage, and kale. Front. Plant Sci. 10: 1–16.

63 Plaxton, W.C. (1996). The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 185–214.

64 Porcel, R., Aroca, R., and Ruiz‐Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 32: 181–200.

65 Qadir, M., Quillérou, E., Nangia, V. et al. (2014). Economics of salt‐induced land degradation and restoration. Nat. Resour. Forum 38: 282–295.

66 Qi, C.H., Chen, M., Song, J., and Wang, B.S. (2009). Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Sci. 176: 200–205.

67 Renault, H., Roussel, V., El Amrani, A. et al. (2010). The Arabidopsis pop2‐1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10: 1–16.

68 Santos, C.V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. (Amsterdam) 103: 93–99.

69 Sasi, S., Venkatesh, J., Daneshi, R.F., and Gururani, M.A. (2018). Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plan. Theory 7: 100.

70 Satir, O. and Berberoglu, S. (2016). Crop yield prediction under soil salinity using satellite derived vegetation indices. F. Crop Res. 192: 134–143.

71 Shabala, S.N. and Lew, R.R. (2002). Turgor regulation in osmotically stressed arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol. 129: 290–299.

72 Shabala, S. and Shabala, L. (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts 5: 407–419.

73 Shabala, L., Zhang, J., Pottosin, I. et al. (2016). Cell‐type‐specific H+‐ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiol. 172: 2445–2458.

74  Shabala, S., Chen, G., Chen, Z.H., and Pottosin, I. (2020). The energy cost of the tonoplast futile sodium leak. New Phytol. 225 (3): 1105–1110.

75 Shi, H., Quintero, F.J., Pardo, J.M., and Zhu, J.K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long‐distance Na+ transport in plants. Plant Cell 14: 456–477.

76 Singh, D., Yadav, N.S., Tiwari, V. et al. (2016). A SNARE‐like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery. Front. Plant Sci. 7: 737.

77 Singh‐Rawal, P., Zsiros, O., Bharti, S. et al. (2011). Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants. J. Bioenerg. Biomembr. 43: 195–202.

78 Snapp, S.S., Shennan, C., and Van Bruggen, A.H.C. (1991). Effects of salinity on severity of infection by Phytophthora parasitica Dast., ion concentrations and growth of tomato, Lycopersicon esculentum Mill. New Phytol. 119: 275–284.

79 Song, C.P., Guo, Y., Qiu, Q. et al. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 101: 10211–10216.

80 de Souza Lima, M.D., Lopes, N.F., Zimmer, P.D. et al. (2012). Enzyme expression in indica and japonica rice cultivars under saline stress. Acta. Sci. Biol. Sci. 34: 473–481.

81 Stepien, P. and Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol. 149: 1154–1165.

82 Sudhir, P. and Murthy, S.D.S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42: 481–486.

83 Sui, N., Yang, Z., Liu, M., and Wang, B. (2015). Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics 16: 1–18.

84 Sweetlove, L.J., Beard, K.F.M., Nunes‐Nesi, A. et al. (2010). Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 15: 462–470.

85 Szabolcs, I. (1989). Salt‐Affected Soils. CRC Press, Inc.

86 Taïbi, K., Taïbi, F., Abderrahim, A. et al. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African. Aust. J. Bot. 105: 306–312.

87 Tiwari, V., Patel, M.K., Chaturvedi, A.K. et al. (2019). Cloning and functional characterization of the Na+/H+ antiporter (NHX1) gene promoter from an extreme halophyte Salicornia brachiata. Gene 683: 233–242.

88 Tripathi, R.S. (2009). Alkali Land Reclamation. New Delhi: Mittal Publications.

89 Tripathi, S., Kumari, S., Chakraborty, A. et al. (2006). Microbial biomass and its activities in salt‐affected coastal soils. Biol. Fertil. Soils 42: 273–277.

90 Trotta, A., Redondo‐Gomez, S., Pagliano, C. et al. (2012). Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. J. Plant Physiol. 169: 111–116.

91 Turan, S. and Tripathy, B.C. (2015). Salt‐stress induced modulation of chlorophyll biosynthesis during de‐etiolation of rice seedlings. Physiol. Plant. 153: 477–491.

92 Wong, D., Jee, G., and Merkelo, H. (1980). Effects of bulk pH and of monovalent and divalent cations on chlorophyll a fluorescence and electron transport in pea thylakoids. Biochem. Biophys. Acta. ‐ Bioenerg. 592: 546–558.

93  Wu, H.J., Zhang, Z., Wang, J.Y. et al. (2012). Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc. Natl. Acad. Sci. U. S. A. 109: 12219–12224.

94 Xu, J., Feng, Y., Wang, Y. et al. (2016). The foliar spray of Rhodopseudomonas palustris grown under Stevia residue extract promotes plant growth via changing soil microbial community. J. Soils Sediments 16: 916–923.

95 Yang, Z., Li, J.L., Liu, L.N. et al. (2020). Photosynthetic regulation under salt stress and salt‐tolerance mechanism of sweet Sorghum. Front. Plant Sci. 10: 1–12.

96 van Zelm, E., Zhang, Y., and Testerink, C. (2020). Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71: 403–433.

97 Zeng, F., Shabala, S., Maksimović, J.D. et al. (2018). Revealing mechanisms of salinity tissue tolerance in succulent halophytes: a case study for Carpobrotus rossi. Plant Cell Environ. 41: 2654–2667.

98 Zerai, D.B., Glenn, E.P., Chatervedi, R. et al. (2010). Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol. Eng. 36: 730–739.

99 Zhang, W., Wang, C., Xue, R., and Wang, L.J. (2019). Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 18: 1360–1368.

100 Zhao, C., Zhang, H., Song, C. et al. (2020). Mechanisms of plant responses and adaptation to soil salinity. Innovation 1: 100017.

101 Zörb, C., Geilfus, C.M., and Dietz, K.J. (2019). Salinity and crop yield. Plant Biol. 21: 31–38.

Physiology of Salt Stress in Plants

Подняться наверх