Читать книгу Wetland Carbon and Environmental Management - Группа авторов - Страница 43
REFERENCES
Оглавление1 Bailey, A.D., Mickler, R., & Frost, C. (2007). Presettlement Fire Regime and Vegetation Mapping in Southeastern Coastal Plain Forest Ecosystems. USDA Forest Service Proceedings RMPRS‐P‐46CD. https://www.firescience.gov/projects/04‐2‐1‐80/project/Bailey_Mickler_Frost.pdf
2 Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2007): Wetlands. In: First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. A. King, W. L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. Marland, A. Z. Rose, and T. J. Wilbanks (eds.). National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC, USA, 139–148 pp.
3 Buschmann, C., Röder, N., Berglund, K., Berglund, Ö., Lærke, P. E., Maddison, M., Mander, Ü., et al. (2020). Perspectives on agriculturally used drained peat soils: Comparison of the socioeconomic and ecological business environments of six European regions. Land Use Policy, 90, 104181.
4 Cowardin, L. M. (1978). Wetland classification in the United States. Journal of Forestry, 76(10), 666–668.
5 Chmura, G. L., Ainsfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, 4. doi: 10.1029/2002GB001917
6 Clark, K., Skowronski, N., Pan, Y., Van Tuyl, S., & Heilman, W. (2006). Fire research in the pine barrens of New Jersey. In: Dickinson, Matthew B. (ed.) Fire in eastern oak forests: delivering science to land managers, proceedings of a conference; 2005 November 15–17; Columbus, OH. Gen. Tech. Rep. NRS‐P‐1. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station: 271.
7 Dahl, T. E. (1990). Wetlands losses in the United States 1780’s to 1990’s. U.S. Department of the Interior, Fish and Wildlife Service, Washington D.C. https://www.fws.gov/wetlands/documents/Wetlands‐Losses‐in‐the‐United‐States‐1780s‐to‐1980s.pdf
8 Dahl, T. E. (2011). Status and Trends of Wetlands in the Conterminous United States 2004 to 2009. US Department of the Interior, U.S. Fish and Wildlife Service, Fisheries and Habitat Conservation. https://www.fws.gov/wetlands/Documents/Status‐and‐Trends‐of‐Wetlands‐in‐the‐Conterminous‐United‐States‐2004‐to‐2009.pdf
9 Dewitz, J. (2019). National Land Cover Database (NLCD) 2016 Products: U.S. Geological Survey data release. https://doi.org/10.5066/P96HHBIE.
10 Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., & Howard, S. (2007). A project for monitoring trends in burn severity. Fire Ecology, 3(1), 3–21. https://doi.org/10.4996/fireecology.0301003
11 Granath, G., Moore, P., Lukenbach, M., & Waddington, J. M. (2016). Mitigating wildfire carbon loss in managed northern peatlands through restoration. Scientific Reports, 6, 28498. doi: 10.1038/srep28498
12 Hawbaker, T. J., Vanderhoof, M. K., Beal, Y. G., Takacs, J. D., Schmidt, G. L., Falgout, J. T., et al. (2017). Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 ‐ 2015) (ver. 1.1, September 2017): U.S. Geological Survey data release. doi: 10.5066/F73B5X76
13 Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H., & Baldocchi, D. D. (2018). A biogeochemical compromise: The high methane cost of sequestering carbon in restored wetlands. Geophysical Research Letters, 45, 6081– 6091. doi: 10.1029/2018GL077747
14 Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Jamsranjav, B., Fukuda, M., & Troxler, T. (2013). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Methodological Guidance on lands with wet and drained soils, and constructed wetlands for wastewater treatment. IPCC: Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/03/Wetlands_Supplement_Entire_Report.pdf
15 Holmquist, J. R., Windham‐Myers, L., Bliss, N. Crooks, S., Morris, J. T., Megonigal, J. P., et al. (2018). Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States. Scientific Reports, 8, 9478. doi: 10.1038/s41598‐018‐26948‐7
16 Homer, C., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G., et al. (2015). Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information: Photogrammetric Engineering and Remote Sensing, 81(5), 345–354. http://www.ingentaconnect.com/content/asprs/pers/2015/00000081/00000005/art00002
17 Hristov, A. N., Johnson, J. M. F., Rice, C. W., Brown, M. E., Conant, R. T., Del Grosso, S. J., et al. (2018). Chapter 5: Agriculture. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero‐Lankao, P., Zhu, Z. (eds.) U.S. Global Change Research Program, Washington, DC, USA, pp. 229–263. doi:10.7930/SOCCR2.2018.Ch5
18 Huang, S., Dahal, D., Young, C., Chander, G., & Liu, S. (2011). Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota, Remote Sensing of Environment, 115, 12. doi: 10.1016/j.rse.2011.08.002.
19 Jafarov, E. E., Romanovsky, V. E., Genet, H., McGuire, A. D., Marchenko, & S. S. (2013). The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environmental Research Letters, 8, 035030. doi: 10.1088/1748‐9326/8/3/035030
20 Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., et al. (2019). Overall Methodology Design for the United States National Land Cover Database 2016 Products. Remote Sensing, 11, 2971. https://doi.org/10.3390/rs11242971
21 Kennedy, H., Alongi, D. M., Karim, A., Chen, G., Chmura, G.L., Crooks, S., et al. (2014). Coastal Wetlands. In: 2013 Supplement to the 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories: Wetlands. T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasans‐ uren, M. Fukuda, et al. (eds.) Switzerland, pp 4.1–4.55.
22 Kirwan, M., & Megonigal, J. (2013). Tidal wetland stability in the face of human impacts and sea‐level rise. Nature, 504, 53–60. doi: 10.1038/nature12856
23 Kolka, R., Trettin, C. Tang, W., Krauss, K., Bansal, S., Drexler, J., et al. (2018). Chapter 13: Terrestrial wetlands. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero‐Lankao, P., Zhu, Z. (eds.) U.S. Global Change Research Program, Washington, DC, USA, pp. 507–567. doi:10.7930/SOCCR2.2018.Ch13
24 Kritee, K., Nair, D., Zavala‐Araiza, D., Proville, J., Rudek, J., Adhya, T. K., et al. (2018). High nitrous oxide fluxes from rice indicate the need to manage water for both long‐ and short‐term climate impacts. PNAS Sep 2018, 115(39), 9720–9725. doi: 10.1073/pnas.1809276115
25 Kroeger, K., Crooks, S., Moseman‐Valtierra, S., & Tang, J. (2017). Restoring tides to reduce methane emissions in impounded wetlands. A new and potent Blue Carbon climate change intervention. Scientific Reports, 7, 11917. doi:/10.1038/s41598‐017‐12138‐4
26 Lajtha, K., Bailey, V. L., McFarlane, K., Paustian, K., Bachelet, D., Abramoff, R., et al. (2018). Chapter 12: Soils. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment. Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero‐Lankao, P., Zhu, Z. (eds.) U.S. Global Change Research Program, Washington, DC, USA, pp. 469–506. doi: 10.7930/SOCCR2.2018.Ch12
27 Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P., & Ciais, P. (2020). How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: A case study for the Amazon basin. One Earth, 3(2), 226–236. doi/10.1016/j.oneear.2020.07.009
28 McKenna, O. P., Mushet, D. M., Rosenberry, D. O., & LaBaugh, J. W. (2017). Evidence for a climate‐induced ecohydrological state shift in wetland ecosystems of the southern Prairie Pothole Region. Climatic Change, 145, 273–287. doi: 10.1007/s10584‐017‐2097‐7
29 McLeod, E., Chmura, G., Bouilon, S., Salm, R., Björk, M., Duarte, C. M., et al. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 10. doi: 10.1890/110004
30 Meli, P., Benayas, J. M. R., Balvanera, P., & Martinez Ramos, M. (2014). Restoration enhances wetland biodiversity and ecosystem service supply, but results are context dependent: a metanalysis. Plos ONE, 9(4), e93507. doi:10.1371/journal.pone.0093507
31 Mickler, R. A. (2013). Carbon fluxes and greenhouse gas emissions from wetland wildland fires in the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. https://www3.epa.gov/ttn/chief/conference/ei20/session9/rmickler.pdf
32 Middleton, B. A. (2013). Rediscovering traditional vegetation management in preserves: Trading experiences between cultures and continents, Biological Conservation, 158. doi: 10.1016/j.biocon.2012.10.003.
33 Moomaw, W. R., Chmura, G. L., Davies, G. T. Finlayson, C. M., Middleton, B. A., Natali, S. M., et al. (2018). Wetlands in a Changing Climate: Science, Policy and Management. Wetlands, 38, 183–205. doi:10.1007/s13157‐018‐1023‐8
34 Moreno‐Mateos, D., Power, M. E., Comin, F. A., & Yockteng, R. (2012). Structural and functional loss in restored wetland ecosystems. PLOS Biology, 10(1), e1001247. doi: 10.1371/journal.pbio.1001247
35 Nahlik, A. M., and Fennessy, M. S. (2016). Carbon storage in US Wetlands. Nature Communications, 7, 13835. doi: 10.1038/ncomms13835
36 Najjar, R., Herrmann, M., Alexander, R., Boyer, E., Burdige, D., Butman, D., et al. (2018). Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America. Global Biogeochemical Cycles, 32. doi: 10.1002/2017GB005790
37 National Oceanic and Atmospheric Administration, Office for Coastal Management. Coastal Change Analysis Program (C‐CAP) High‐Resolution Land Cover. (2011). Charleston, SC: NOAA Office for Coastal Management. www.coast.noaa.gov/htdata/raster1/landcover/bulkdownload/30m:lc/.
38 Neary, D. G., Ryan, K. C., & DeBano, L. F. (eds.) (2005 ‐ revised 2008). Wildland fire in ecosystems: effects of fire on soils and water. Gen. Tech. Rep. RMRS‐GTR‐42‐vol.4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 250 p.
39 Neubauer S. C., Verhoeven J. T. A. (2019). Wetland effects on global climate: Mechanisms, impacts, and management recommendations. In: An, S., Verhoeven, J. (eds.) Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies (Analysis and Synthesis), vol 238. Springer, Cham.
40 Osborne, T. Z., Kobziar, L. N., & Inglett, P. W. Fire and water: New perspectives on fire’s role in shaping wetland ecosystems. (2013). Fire Ecology, 9, 1–5. doi: 10.4996/fireecology.0901001
41 Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS One, 7(9), e43542. doi:10.1371/journal.pone.0043542
42 Poffenbarger, H., Needelman, B., & Megonigal, P. (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31, 831–842. doi:10.1007/s13157‐011‐0197‐0
43 Reddy, A. D., Hawbaker, T. J., Wurster, F., Zhu, Z., Ward, S., Newcomb, D., & Murray, R. (2015). Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi‐temporal LiDAR. Remote Sensing of Environment, 170, 306–316. doi: 10.1016/j.rse.2015.09.017
44 Roman, C. T., & Burdick, D. M. (eds.). (2012). Tidal Marsh Restoration: A Synthesis of Science and Practice. Island Press. Washington. 406 pp.
45 Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., et al. (2020). The Global Methane Budget 2000–2017. Earth System Science Data, 12, 1561–1623. https://doi.org/10.5194/essd‐12‐1561‐2020
46 Sleeter, B. M., Liu, J., Daniel, C., Rayfield, B., Sherba, J., Hawbaker, T. J., et al. (2018). Effects of contemporary land‐use and land‐cover change on the carbon balance of terrestrial ecosystems in the United States. Environmental Research Letters, 13, 045006. doi: 10.1088/1748‐9326/aab540
47 Sundquist, E. T., Acherman, V. S., Stallard, R. F., & Bliss, N. B. (2011). Historical influence of soil and water management on sediment and carbon budgets in the United States. Applied Geochemistry, 26, 259. https://doi.org/10.1016/j.apgeochem.2011.03.118
48 U.S. Environmental Protection Agency. (2015). National Management Measures to Control Nonpoint Source Pollution from Forestry Chapter 3G. https://www.epa.gov/sites/production/files/2015‐10/documents/ch3g.pdf
49 U.S. Environmental Protection Agency. (2019). Mitigation Banks under CWA Section 404. https://www.epa.gov/cwa‐404/mitigation‐banks‐under‐cwa‐section‐404
50 U.S. Fish and Wildlife Services Fire Management, Georgia (2020). U.S. Department of Interior, Fish and Wildlife Service. https://www.fws.gov/fire/news/ga/big_turnaround_fire.shtml
51 U.S. Fish and Wildlife Service. (2020). National Wetlands Inventory website. U.S. Department of Interior, Fish and Wildlife Service, Washington DC. https://www.fws.gov/wetlands/
52 Valk, A. G. v. d. (2005). Water‐level fluctuations in North American prairie wetlands. Hydrobiologia, 539, 171–188. doi:10.1007/s10750‐004‐4866‐3
53 Venne, L. S., Trexler, J. C., & Frederick, P.bC. (2016). Prescribed burn creates pulsed effects on a wetland aquatic community. Hydrobiologia, 771, 281–295. https://doi.org/10.1007/s10750‐016‐2640‐y
54 Wang, X., Xu, J., Wu, Z., Shen, Y., Cai, Y. (2019a). Effect of annual prescribed burning of wetlands on soil organic carbon fractions: A 5‐year study in Poyang, China. Ecological Engineering, 138, 219–226. https://doi.org/10.1016/j.ecoleng.2019.07.028
55 Wang, F., Lu, X., Sanders, C. J., & Tang, J. (2019b). Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 10, 5434. doi:10.1038/s41467‐019‐13294‐z
56 Windham‐Myers, L., Cai, W.‐J., Alin, S. R., Andersson, A., Crosswell, J., Dunton, K. H., et al. (2018). Chapter 15: Tidal wetlands and estuaries. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero‐Lankao, P., Zhu, Z. (eds.) U.S. Global Change Research Program, pp. 596–648. doi:10.7930/SOCCR2.2018
57 Winter, T. C., & Rosenberry, D. O. (1998). Hydrology of Prairie Pothole Wetlands during Drought and Deluge: A 17‐Year Study of the Cottonwood Lake Wetland Complex in North Dakota in the Perspective of Longer Term Measured and Proxy Hydrological Records. Climatic Change, 40, 189–209. doi: 10.1023/A:1005448416571
58 Wolf, K. L., Ahn, C., & Noe, G. B. (2011). Microtopography enhances nitrogen cycling and removal in created mitigation wetlands. Ecological Engineering, 37(9), 1398–1406. doi: 10.1016/j.ecoleng.2011.03.013
59 Zhang, Z., Zimmermann, N. E., Stenke, A., Li, X., Hodson, E. L., Zhu, G., et al. (2017). Wetland methane emissions in future climate change. Proceedings of the National Academy of Sciences, 114(36), 9647–9652. doi: 10.1073/pnas.1618765114