Читать книгу Wetland Carbon and Environmental Management - Группа авторов - Страница 81

REFERENCES

Оглавление

1 Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–372. https://doi.org/10.1111/j.1469‐8137.2004.01224.x

2 Anderson, B., Barlett, K., Frolking, S., Hayhoe, K., Jenkins, J., & Salas, W. (2010). Methane and nitrous oxide emissions from natural sources (No. EPA 430‐R‐10‐001). US Environmental Protection Agency, Office of Atmospheric Programs, Washington, DC, USA. Retrieved from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100717T.TXT

3 Angle, J. C., Morin, T. H., Solden, L. M., Narrowe, A. B., Smith, G. J., Borton, M. A., et al. (2017). Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature Communications, 8(1), 1–9. https:10.1038/s41467‐017‐01753‐4

4 Armentano, T. V, & Menges, E. S. (1986). Patterns of change in the carbon balance of organic soil‐wetlands of the temperate zone. The Journal of Ecology, 74(3), 755. https:10.2307/2260396

5 Aufdenkampe, A. K., Hedges, J. I., Richey, J. E., Krusche, A. V., & Llerena, C. A. (2001). Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limnology and Oceanography, 46(8), 1921–1935. https://doi.org/10.4319/lo.2001.46.8.1921

6 Bailey, V. L., Smith, A. P., Tfaily, M., Fansler, S. J., & Bond‐Lamberty, B. (2017). Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains. Soil Biology and Biochemistry, 107, 133–143. https://doi.org/10.1016/j.soilbio.2016.11.025

7 Baldock, J. A., Masiello, C. A., Gélinas, Y., & Hedges, J. I. (2004). Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry, 92(1–4 Spec. Iss.), 39–64. https://doi.org/10.1016/j.marchem.2004.06.016

8 Bansal, S., Johnson, O. F., Meier, J., & Zhu, X. (2020). Vegetation affects timing and location of wetland methane emissions. Journal of Geophysical Research: Biogeosciences, 125(9), e2020JG005777. https://doi.org/10.1029/2020jg005777

9 Bartlett, K. B., Harriss, R. C., & Sebacher, D. I. (1985). Methane flux from coastal salt marshes. Journal of Geophysical Research: Atmospheres, 90(D3), 5710–5720. https://doi.org/10.1029/JD090iD03p05710

10 Basiliko, N., Stewart, H., Roulet, N. T., & Moore, T. R. (2012). Do root exudates enhance peat decomposition? Geomicrobiology Journal, 29(4), 374–378. https://doi.org/10.1080/01490451.2011.568272

11 Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese‐ and iron‐dependent marine methane oxidation. Science, 325(5937), 184–187. https://doi.org/10.1126/science.1169984

12 Bedford, B. L., Walbridge, M. R., & Aldous, A. (1999). Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology, 80(7), 2151–2169. https://doi.org/10.1890/0012‐9658(1999)080[2151:PINAAP]2.0.CO;2

13 Beltman, B., Van Den Broek, T., Barendregt, A., Bootsma, M.., & Grootjans, A. P. (2001). Rehabilitation of acidified and eutrophied fens in The Netherlands: Effects of hydrologic manipulation and liming. Ecological Engineering, 17(1), 21–31. https://doi.org/10.1016/S0925‐8574(00)00128‐2

14 Belyea, L. R. (1996). Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos, 77(3), 529. https://doi.org/10.2307/3545942

15 Benner, R., Fogel, M. L., Sprague, E. K., & Hodson, R. E. (1987). Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature, 329, 708–710. https://doi.org/10.1038/329708a0

16 Bernal, B., Megonigal, J. P., & Mozdzer, T. J. (2017). An invasive wetland grass primes deep soil carbon pools. Global Change Biology, 23(5), 2104–2116. https://doi.org/10.1111/gcb.13539

17 Bhadha, J. H., Wright, A. L., & Snyder, G. H. (2009). Everglades Agricultural Area soil subsidence and sustainability. University of Florida, Institute of Food and Agricultural Sciences, publication SL 311.

18 Billett, M. F., & Moore, T. R. (2007). Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrological Processes, 22(12), 2044–2054. https://doi.org/10.1002/hyp.6805

19 Billett, M. F., Palmer, S. M., Hope, D., Deacon, C., Storeton‐West, R., Hargreaves, K. J., et al. (2004). Linking land‐atmosphere‐stream carbon fluxes in a lowland peatland system. Global Biogeochemical Cycles, 18(1), n/a–n/a. https://doi.org/10.1029/2003gb002058

20 Billett, M. F., Garnett, M. H., Dinsmore, K. J., Dyson, K. E., Harvey, F., Thomson, A. M., et al. (2012). Age and source of different forms of carbon released from boreal peatland streams during spring snowmelt in E. Finland. Biogeochemistry, 111(1–3), 273–286. https://doi.org/10.1007/s10533‐011‐9645‐4

21 Blain, D., Murdiyarso, D., Couwenberg, J., Nagata, O., Renou‐Wilson, F., Sirin, A., et al. (2014). Rewetted organic soils. In: T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, B. Jamsranjav, M. Fukuda, & T. Troxler (Eds.), 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands Task Force on National Greenhouse Gas Inventories (p. 42). Geneva, Switzerland: Intergovernmental Panel on Climate Change.

22 Blair, N. E., & Aller, R. C. (2012). The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4(1), 401–423. https://doi.org/10.1146/annurev‐marine‐120709‐142717

23 Blair, N. E., Leithold, E. L., & Aller, R. C. (2004). From bedrock to burial: The evolution of particulate organic carbon across coupled watershed‐continental margin systems. Marine Chemistry, 92(1–4 Spec. Iss.), 141–156. https://doi.org/10.1016/j.marchem.2004.06.023

24 Blazewicz, S. J., Petersen, D. G., Waldrop, M. P., & Firestone, M. K. (2012). Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling. Journal of Geophysical Research: Biogeosciences, 117(2), 1–9. https://doi.org/10.1029/2011JG001864

25 Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea‐level rise. Nature Geoscience, 2(7), 488–491. https://doi.org/10.1038/ngeo553

26 van Bodegom, P. M., Stams, F., Mollema, L., Boeke, S., & Leffelaar, P. (2001). Methane oxidation and the competition for oxygen in the rice rhizosphere. Applied and Environmental Microbiology, 67, 3586–3597. https://doi.org/10.1128/AEM.67.8.3586‐3597.2001

27 van Bodegom, P. M., Broekman, R., Van Dijk, J., Bakker, C., & Aerts, R. (2005). Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands. Biogeochemistry, 76(1), 69–83. https://doi.org/10.1007/s10533‐005‐2053‐x

28 Bodelier, P. L. E. (2011). Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environmental Sustainability, 3(5), 379–388. https://doi.org/10.1016/j.cosust.2011.06.002

29 Bodelier, P. L. E., & Frenzel, P. (1999). Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Applied and Environmental Microbiology, 65(5), 1826–1833. https://doi.org/10.1128/aem.65.5.1826‐1833.1999

30 Bodelier, P. L. E., Roslev, P., Henckel, T., & Frenzel, P. (2000). Stimulation by ammonium‐based fertilizers of methane oxidation in soil around rice roots. Nature, 403(6768), 421–424. https://doi.org/10.1038/35000193

31 Bonnett, S. A. F., Maltby, E., & Freeman, C. (2017). Hydrological legacy determines the type of enzyme inhibition in a peatlands chronosequence. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598‐017‐10430‐x

32 Boye, K., Noël, V., Tfaily, M. M., Bone, S. E., Williams, K. H., Bargar, J. R., & Fendorf, S. (2017). Thermodynamically controlled preservation of organic carbon in floodplains. Nature Geoscience, 10(6), 415–419. https://doi.org/10.1038/ngeo2940

33 Brantley, C. G., Day, J. W., Lane, R. R., Hyfield, E., Day, J. N., & Ko, J. Y. (2008). Primary production, nutrient dynamics, and accretion of a coastal freshwater forested wetland assimilation system in Louisiana. Ecological Engineering, 34(1), 7–22. https://doi.org/10.1016/j.ecoleng.2008.05.004

34 van Breemen, N. (1995). How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10(7), 270–275. https://doi.org/10.1016/0169‐5347(95)90007‐1

35 Bridgham, S. D., & Richardson, C. J. (2003). Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands. Biogeochemistry, 65, 151–178. https://doi.org/10.1023/A:1026026212581

36 Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26(4), 889–916. https://doi.org/10.1672/0277‐5212(2006)26[889:TCBONA]2.0.CO;2

37 Bridgham, S. D., Cadillo‐Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1–22. https://doi.org/10.1111/gcb.12131

38 Brinson, M. M., Lugo, A. E., & Brown, S. (1981). Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics, 12, 123–161. https://doi.org/doi.org/10.1146/annurev.es.12.110181.001011

39 Brooks, M. L., Meyer, J. S., & McKnight, D. M. (2007). Photooxidation of wetland and riverine dissolved organic matter: Altered copper complexation and organic composition. Hydrobiologia, 579(1), 95–113. https://doi.org/10.1007/s10750‐006‐0387‐6

40 Brown, S. L., Gouslbra, C. S., & Evans, M. G. (2019). Controls on fluvial carbon efflux from eroding peatland catchments. Hydrological Processes, 33(3), 361–371. https://doi.org/10.1002/hyp.13329

41 Bruhn, D., Møller, I. M., Mikkelsen, T. N., & Ambus, P. (2012). Terrestrial plant methane production and emission. Physiologia Plantarum, 144(3), 201–209. https://doi.org/10.1111/j.1399‐3054.2011.01551.x

42 Burd, K., Tank, S. E., Dion, N., Quinton, W. L., Spence, C., Tanentzap, A. J., & Olefeldt, D. (2018). Seasonal shifts in export of DOC and nutrients from burned and unburned peatland‐rich catchments, Northwest Territories, Canada. Hydrology and Earth System Sciences, 22(8), 4455–4472. https://doi.org/10.5194/hess‐22‐4455‐2018

43 Burgin, A. J., & Hamilton, S. K. (2008). NO3–‐driven SO42– production in freshwater ecosystems: Implications for N and S cycling. Ecosystems, 11(6), 908–922. https://doi.org/10.1007/s10021‐008‐9169‐5

44 Butman, D., & Raymond, P. A. (2011). Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience, 4(12), 839–842. https://doi.org/10.1038/ngeo1294

45 Cabezas, A., Comín, F. A., & Walling, D. E. (2009). Changing patterns of organic carbon and nitrogen accretion on the middle Ebro floodplain (NE Spain). Ecological Engineering, 35(10), 1547–1558. https://doi.org/10.1016/j.ecoleng.2009.07.006

46 Cai, W.‐J. (2011). Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science, 3(1), 123–145. https://doi.org/10.1146/annurev‐marine‐120709‐142723

47 Cai, W.‐J., & Wang, Y. (1998). The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4), 657–668. https://doi.org/10.4319/lo.1998.43.4.0657

48 Cao, F., Tzortziou, M., Hu, C., Mannino, A., Fichot, C. G., Del Vecchio, R., et al. (2018). Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sensing of Environment, 205(April 2017), 151–165. https://doi.org/10.1016/j.rse.2017.11.014

49 Caplan, J. S., Hager, R. N., Megonigal, J. P., & Mozdzer, T. J. (2015). Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environmental Research Letters, 10(11), 115006. https://doi.org/10.1088/1748‐9326/10/11/115006

50 Carey, E., & Taillefert, M. (2005). The role of soluble Fe(III) in the cycling of iron and sulfur in coastal marine sediments. Limnology and Oceanography, 50(4), 1129–1141. https://doi.org/10.4319/lo.2005.50.4.1129

51 Carlson, K. M., Goodman, L. K., & May‐Tobin, C. C. (2015). Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environmental Research Letters, 10(7), 74006. https://doi.org/10.1088/1748‐9326/10/7/074006

52 Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., & Feller, I. C. (2014). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 723–727. https://doi.org/10.1073/pnas.1315800111

53  Chambers, L. G., Osborne, T. Z., & Reddy, K. R. (2013). Effect of salinity‐altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry. https://doi.org/10.1007/s10533‐013‐9841‐5

54 Chambers, R. M., & Odum, W. E. (1990). Porewater oxidation, dissolved phosphate and the iron curtain: Iron‐phosphorus relations in tidal freshwater marshes. Biogeochemistry, 10, 37–52. https://doi.org/10.1007/BF00000891

55 Chanton, J. P., Martens, C. S., & Kelley, C. A. (1989). Gas transport from methane‐saturated, tidal freshwater and wetland sediments. Limnology and Oceanography, 34(5), 807–819. https://doi.org/10.4319/lo.1989.34.5.0807

56 Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., et al. (2008). Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Global Biogeochemical Cycles, 22(4), 1–11. https://doi.org/10.1029/2008GB003274

57 Chapin, C. T., Bridgham, S. D., & Pastor, J. (2004). pH and nutrient effects on above‐ground net primary production in a Minnesota, USA bog and fen. Wetlands, 24(1), 186–201. https://doi.org/10.1672/0277‐5212(2004)024[0186:PANEOA]2.0.CO;2

58 Chapman, S. K., Hayes, M. A., Kelly, B., & Langley, J. A. (2019). Exploring the oxygen sensitivity of wetland soil carbon mineralization. Biology Letters, 15(1), 20180407. https://doi.org/10.1098/rsbl.2018.0407

59 Chen, C. T. A., Huang, T. H., Chen, Y. C., Bai, Y., He, X., & Kang, Y. (2013). Air‐sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10, 6509–6544. https://doi.org/10.5194/bg‐10‐6509‐2013

60 Childers, D. L., Day, J. W., & McKellar Jr., H. N. (2000). Twenty more years of marsh and estuarine flux studies: Revisiting Nixon (1980). In: M. Weinstein & D. A. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 391–423). Dordrecht, Netherlands: Kluwer Academic Publishing.

61 Chin, Y. P., Traina, S. J., Swank, C. R., & Backhus, D. (1998). Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland. Limnology and Oceanography, 43(6), 1287–1296. https://doi.org/10.4319/lo.1998.43.6.1287

62 Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4), 1111. https://doi.org/10.1029/2002GB001917

63 Christensen, D. (1984). Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments. Limnology and Oceanography, 29(1), 189–191. https://doi.org/10.4319/lo.1984.29.1.0189

64 Clay, G. D., Worrall, F., & Fraser, E. D. G. (2009). Effects of managed burning upon dissolved organic carbon (DOC) in soil water and runoff water following a managed burn of a UK blanket bog. Journal of Hydrology, 367(1–2), 41–51. https://doi.org/10.1016/j.jhydrol.2008.12.022

65 Cleary, J., Roulet, N. T., & Moore, T. R. (2005). Greenhouse gas emissions from Canadian peat extraction, 1990–2000: A life‐cycle analysis. Ambio, 34(6), 456–461. https://doi.org/10.1579/0044‐7447‐34.6.456

66 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon cycle. Ecosystems, 10(1), 172–185.

67 Colmer, T. D. (2003). Long‐distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant, Cell and Environment, 26, 17–36.

68 Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., et al. (2011). Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Change Biology, 17(11), 3392–3404. https://doi.org/10.1111/j.1365‐2486.2011.02496.x

69 Conner, W. H., & Day, J. W. (1991). Leaf litter decomposition in three Louisiana freshwater forested wetland areas with different flooding regimes. Wetlands, 11(2), 303–312. https://doi.org/10.1007/BF03160855

70 Cornwell, J. C., Kemp, W. M., & Kana, T. M. (1999). Denitrification on coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecology, 33, 41–54. https://doi.org/10.1023/A:1009921414151

71 Cornwell, J. C., Owens, M. S., Staver, L. W., & Stevenson, J. C. (2020). Tidal marsh restoration at Poplar Island I: Transformation of estuarine sediments into marsh soils. Wetlands, 40. 1673–1686. https://doi.org/10.1007/s13157‐020‐01294‐5

72 Courtwright, J., & Findlay, S. E. G. (2011). Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands, 31(2), 239–249. https://doi.org/10.1007/s13157‐011‐0156‐9

73 Couwenberg, J., Dommain, R., & Joosten, H. (2010). Greenhouse gas fluxes from tropical peatlands in south‐east Asia. Global Change Biology, 16(6), 1715–1732. https://doi.org/10.1111/j.1365‐2486.2009.02016.x

74 Covey, K. R., & Megonigal, J. P. (2019). Methane production and emissions in trees and forests. New Phytologist, 222(1), 35–51. https://doi.org/10.1111/nph.15624

75 Craft, C., Megonigal, P., Broome, S., Stevenson, J., Cornell, J., Zheng, L., et al. (2003). The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecological Applications, 13(5), 1417–1432. https://doi.org/10.1890/02‐5086

76 Crill, P. M., Martikainen, P. J., Nykanen, H., & Silvola, J. (1994). Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biology and Biochemistry, 26(10), 1331–1339. https://doi.org/10.1016/0038‐0717(94)90214‐3

77 Cui, J., Li, Z., Liu, Z., Ge, B., Fang, C., Zhou, C., & Tang, B. (2014). Physical and chemical stabilization of soil organic carbon along a 500‐year cultived soil chronosequence originating from estuarine wetlands: Temporal patterns and land use effects. Agriculture, Ecosystems and Environment, 196(October 2017), 10–20. https://doi.org/10.1016/j.agee.2014.06.013

78 Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J., & Whigham, D. F. (1989). Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia, 78(1), 20–26. https://doi.org/10.1007/BF00377193

79 Cutter, G. A., & Velinsky, D. J. (1988). Temporal variations of sedimentary sulfur in a Delaware salt marsh. Marine Chemistry, 23, 311–327. https://doi.org/10.1016/0304‐4203(88)90101‐6

80 Dai, T., & Wiegert, R. G. (1996). Estimation of the primary productivity of Spartina alterniflora using a canopy model. Ecography, 19, 410–423. https://doi.org/10.1111/j.1600‐0587.1996.tb00006.x

81 Dalal, R. C., & Bridge, B. J. (1996). Aggregation and organic matter storage in sub‐humid and semi‐arid soils. In M. R. Carter & B. A. Stewart (Eds.), Structure and organic matter storage in agricultural soils (pp. 263–307). Boca Raton, FL: CRC Press.

82 Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K., & Kiene, R. P. (2010). Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7(3), 1099–1108. https://doi.org/10.5194/bg‐7‐1099‐2010

83 Dang, C., Morrissey, E. M., Neubauer, S. C., & Franklin, R. B. (2019). Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands. Global Change Biology. https://doi.org/10.1111/gcb.14486

84 Darrouzet‐Nardi, A., & Weintraub, M. N. (2014). Evidence for spatially inaccessible labile N from a comparison of soil core extractions and soil pore water lysimetry. Soil Biology and Biochemistry, 73(3), 22–32. https://doi.org/10.1016/j.soilbio.2014.02.010

85 Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V, & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience, 50(8), 667–680. https://doi.org/10.1641/0006‐3568(2000)050[0667:TACMOS]2.0.CO;2

86 Day, F. P. (1982). Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology, 63(November 1980), 670–678. https://doi.org/10.2307/1936787

87 Dean, J. F., Garnett, M. H., Spyrakos, E., & Billett, M. F. (2019). The potential hidden age of dissolved organic carbon exported by peatland streams. Journal of Geophysical Research: Biogeosciences, 124(2), 328–341. https://doi.org/10.1029/2018JG004650

88 Deegan, L. A., Johnson, D. S., Warren, R. S., Peterson, B. J., Fleeger, J. W., Fagherazzi, S., & Wollheim, W. M. (2012). Coastal eutrophication as a driver of salt marsh loss. Nature, 490(7420), 388–392. https://doi.org/10.1038/nature11533

89 DeLaune, R. D., & White, J. R. (2012). Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: A case study of the rapidly subsiding Mississippi River deltaic plain. Climatic Change, 110(1–2), 297–314. https://doi.org/10.1007/s10584‐011‐0089‐6

90 Deverel, S. J., Ingrum, T., & Leighton, D. (2016). Present‐day oxidative subsidence of organic soils and mitigation in the Sacramento‐San Joaquin Delta, California, USA. Hydrogeology Journal, 24(3), 569–586. https://doi.org/10.1007/s10040‐016‐1391‐1

91 Devol, A. H., Richey, J. E., Clark, W. A., King, S. L., & Martinelli, L. A. (1988). Methane emissions to the troposphere from the Amazon floodplain. Journal of Geophysical Research: Atmospheres, 93(D2), 1583–1592. https://doi.org/10.1029/JD093iD02p01583

92 Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R. M., Drewer, J., & Helfter, C. (2010). Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biology, 16(10), 2750–2762. https://doi.org/10.1111/j.1365‐2486.2009.02119.x

93 Dinsmore, K. J., Billett, M. F., & Dyson, K. E. (2013). Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Global Change Biology, 19(7), 2133–2148. https://doi.org/10.1111/gcb.12209

94 Dioumaeva, I., Trumbore, S., Schuur, E. A. G., Goulden, M. L., Litvak, M., & Hirsch, A. I. (2003). Decomposition of peat from upland boreal forest: Temperature dependence and sources of respired carbon. Journal of Geophysical Research: Atmospheres, 108(3), 1–12. https://doi.org/10.1029/2001jd000848

95 Dorodnikov, M., Knorr, K. H., Kuzyakov, Y., & Wilmking, M. (2011). Plant‐mediated CH4 transport and contribution of photosynthates to methanogenesis at a boreal mire: A 14C pulse‐labeling study. Biogeosciences, 8(8), 2365–2375. https://doi.org/10.5194/bg‐8‐2365‐2011

96 Dorrepaal, E., Toet, S., Van Logtestijn, R. S. P., Swart, E., Van De Weg, M. J., Callaghan, T. V., & Aerts, R. (2009). Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460(7255), 616–619. https://doi.org/10.1038/nature08216

97 Doughty, C. L., Langley, J. A., Walker, W. S., Feller, I. C., Schaub, R., & Chapman, S. K. (2016). Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts, 39(2), 385–396. https://doi.org/10.1007/s12237‐015‐9993‐8

98 Drake, B. G. (2014). Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: Review of a 28‐year study. Global Change Biology, 20(11), 3329–3343. https://doi.org/10.1111/gcb.12631

99 Drake, H., & Ivarsson, M. (2018). The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biology Reviews, 32(1), 20–25. https://doi.org/10.1016/j.fbr.2017.10.001

100 Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M., & Striegl, R. G. (2015). Ancient low‐molecular‐weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences of the United States of America, 112(45), 13946–13951. https://doi.org/10.1073/pnas.1511705112

101 Drexler, J. Z., de Fontaine, C. S., & Deverel, S. J. (2009). The legacy of wetland drainage on the remaining peat in the Sacramento San Joaquin Delta, California, USA. Wetlands, 29(1), 372–386. https://doi.org/10.1672/08‐97.1

102 Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid‐base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30(2), 297–306. https://doi.org/doi.org/10.1029/93WR02888

103 Drösler, M., Verchot, L. V, Freibauer, A., Pan, G., Evans, C. D., Bourbonniere, R. A., et al. (2014). Drained inland organic soils. In: T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, B. Jamsranjav, M. Fukuda, & T. Troxler (Eds.), 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands Task Force on National Greenhouse Gas Inventories (p. 79). Geneva, Switzerland: Intergovernmental Panel on Climate Change.

104 Duan, W. M., Hedrick, D. B., Pye, K., Coleman, M. L., & White, D. C. (1996). A preliminary study of the geochemical and microbiological characteristics of modern sedimentary concretions. Limnology and Oceanography, 41(7), 1404–1414. https://doi.org/10.4319/lo.1996.41.7.1404

105 Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3(11), 961–968. https://doi.org/10.1038/nclimate1970

106 Duddleston, K. N., Kinney, M. A., Kiene, R. P., & Hines, M. E. (2002). Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product. Global Biogeochemical Cycles, 16(4), 11‐1–11‐9. https://doi.org/10.1029/2001gb001402

107 Dunfield, P., Knowles, R., Dumont, R., & Moore, T. R. (1993). Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biology and Biochemistry, 25(3), 321–326. https://doi.org/10.1016/0038‐0717(93)90130‐4

108 Dunn, C., Jones, T. G., Roberts, S., & Freeman, C. (2016). Plant species effects on the carbon storage capabilities of a blanket bog complex. Wetlands, 36(1), 47–58. https://doi.org/10.1007/s13157‐015‐0714‐7

109 Egger, M., Rasigraf, O., Sapart, C. J., Jilbert, T., Jetten, M. S. M., Röckmann, T., et al. (2015). Iron‐mediated anaerobic oxidation of methane in brackish coastal sediments. Environmental Science and Technology, 49(1), 277–283. https://doi.org/10.1021/es503663z

110 Emerson, D., Weiss, J. V, & Megonigal, J. P. (1999). Iron‐oxidizing bacteria are associated with ferric hydroxide precipitates (Fe‐plaque) on the roots of wetland plants. Applied and Environmental Microbiology, 65(6), 2758–2761.

111 Enríquez, S., Duarte, C. M., & Sand‐Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N:P content. Oecologia, 94(4), 457–471. https://doi.org/10.1007/BF00566960

112 Erickson, J. E., Megonigal, J. P., Peresta, G., & Drake, B. G. (2007). Salinity and sea level mediate elevated CO2 effects on C3‐C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Global Change Biology, 13, 202–215. https://doi.org/10.1111/j.1365‐2486.2006.01285.x

113 Erwin, K. L. (2009). Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecology and Management, 17(1), 71–84. https://doi.org/10.1007/s11273‐008‐9119‐1

114 Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long‐term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution, 137(1), 55–71. https://doi.org/10.1016/j.envpol.2004.12.031

115 Evans, C. D., Freeman, C., Cork, L. G., Thomas, D. N., Reynolds, B., Billett, M. F., et al. (2007). Evidence against recent climate‐induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophysical Research Letters, 34(7), 1–5. https://doi.org/10.1029/2007GL029431

116 Evans, C. D., Jones, T. G., Burden, A., Ostle, N., Zieliński, P., Cooper, M. D. A., et al. (2012). Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biology, 18(11), 3317–3331. https://doi.org/10.1111/j.1365‐2486.2012.02794.x

117 Evans, C. D., Page, S. E., Jones, T., Moore, S., Gauci, V., Laiho, R., et al. (2014). Contrasting vulnerability of drained tropical and high‐latitude peatlands to fluvial loss of stored carbon. Global Biogeochemical Cycles, 28(11), 1215–1234. https://doi.org/10.1002/2013GB004782

118 Ewing, J. M., & Vepraskas, M. J. (2006). Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands, 26(1), 119–130. https://doi.org/10.1672/0277‐5212(2006)26[119:EPASSI]2.0.CO;2

119 Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T., Cook‐Patton, S. C., et al. (2018). Natural climate solutions for the United States. Science Advances, 4(11), 1–15. https://doi.org/10.1126/sciadv.aat1869

120 Fenner, N., & Freeman, C. (2011). Drought‐induced carbon loss in peatlands. Nature Geoscience, 4(12), 895–900. https://doi.org/10.1038/ngeo1323

121 Fenner, N., & Freeman, C. (2020). Woody litter protects peat carbon stocks during drought. Nature Climate Change, 10(4), 363–369. https://doi.org/10.1038/s41558‐020‐0727‐y

122 Fenner, N., Freeman, C., Lock, M. A., Harmens, H., Reynolds, B., & Sparks, T. (2007). Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science and Technology, 41(9), 3146–3152. https://doi.org/10.1021/es061765v

123 Fetherston, K. L., Naiman, R. J., & Bilby, R. E. (1995). Large woody debris, physical process, and riparian forest development in montane river networks of the Pacific Northwest. Geomorphology, 13(1–4), 133–144. https://doi.org/10.1016/0169‐555X(95)00033‐2

124 Feurdean, A., Gałka, M., Florescu, G., Diaconu, A. C., Tanţău, I., Kirpotin, S., & Hutchinson, S. M. (2019). 2000 years of variability in hydroclimate and carbon accumulation in western Siberia and the relationship with large‐scale atmospheric circulation: A multi‐proxy peat record. Quaternary Science Reviews, 226(2019), 105948. https://doi.org/10.1016/j.quascirev.2019.105948

125 Fey, A., & Conrad, R. (2003). Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil. Soil Biology and Biochemistry, 35, 1–8.

126 Flanagan, N. E., Wang, H., Winton, S., & Richardson, C. J. (2020). Low‐severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Global Change Biology, 26(7), 3930–3946. https://doi.org/10.1111/gcb.15102

127 Frankignoulle, M. (1994). A complete set of buffer factors for acid/base CO2 system in seawater. Journal of Marine Systems, 5(2), 111–118. https://doi.org/10.1016/0924‐7963(94)90026‐4

128 Freeman, C., Lock, M. A., Marxsen, J., & Jones, S. E. (1990). Inhibitory effects of high molecular weight dissolved organic matter upon metabolic processes in biofilms from contrasting rivers and streams. Freshwater Biology, 24(1), 159–166. https://doi.org/10.1111/j.1365‐2427.1990.tb00315.x

129 Freeman, C., Ostle, N., & Kang, H. (2001). An enzymic “latch” on a global carbon store. Nature, 409(6817), 149. https://doi.org/10.1038/35051650

130 Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., & Fenner, N. (2001). Export of organic carbon from peat soils. Nature, 412(6849), 785. https://doi.org/10.1038/35090628

131 Freeman, C., Ostle, N. J., Fenner, N., & Kang, H. (2004). A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry, 36(10), 1663–1667. https://doi.org/10.1016/j.soilbio.2004.07.012

132 Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds, B., et al. (2004). Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430(6996), 195–198. https://doi.org/10.1038/nature02707

133 Freeman, C., Fenner, N., & Shirsat, A. H. (2012). Peatland geoengineering: An alternative approach to terrestrial carbon sequestration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1974), 4404–4421. https://doi.org/10.1098/rsta.2012.0105

134 Frey, K. E., & Smith, L. C. (2005). Amplified carbon release from vast West Siberian peatlands by 2100. Geophysical Research Letters, 32(9), 1–4. https://doi.org/10.1029/2004GL022025

135 Friedrichs, C. T., & Perry, J. E. (2001). Tidal salt marsh morphodynamics: A synthesis. Journal of Coastal Research, Special Issue, 27, 7–37.

136 Fritz, K. A., & Whiles, M. R. (2018). Amphibian‐mediated nutrient fluxes across aquatic–terrestrial boundaries of temporary wetlands. Freshwater Biology, 63(10), 1250–1259. https://doi.org/10.1111/fwb.13130

137 Frolking, S., & Roulet, N. T. (2007). Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology, 13(5), 1079–1088. https://doi.org/10.1111/j.1365‐2486.2007.01339.x

138 Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., & Richard, P. J. H. (2010). A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth System Dynamics, 1(1), 1–21. https://doi.org/10.5194/esd‐1‐1‐2010

139 Galand, P. E., Yrjäl¨a, K., & Conrad, R. (2010). Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences, 7(11), 3893–3900. https://doi.org/10.5194/bg‐7‐3893‐2010

140 Gandois, L., Cobb, A. R., Hei, I. C., Lim, L. B. L., Salim, K. A., & Harvey, C. F. (2013). Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: Implications for carbon release. Biogeochemistry, 114(1–3), 183–199. https://doi.org/10.1007/s10533‐012‐9799‐8

141 Gauci, V., Matthews, E., Dise, N. B., Walter, B., Koch, D., Granberg, G., & Vile, M. A. (2004). Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proceedings of the National Academy of Sciences, 101(34), 12583–12587.

142 Gauci, V., Gowing, D. J. G., Hornibrook, E. R. C., Davis, J. M., & Dise, N. B. (2010). Woody stem methane emission in mature wetland alder trees. Atmospheric Environment, 44(17), 2157–2160. https://doi.org/10.1016/j.atmosenv.2010.02.034

143 Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., & Silliman, B. R. (2011). The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change, 106(1), 7–29. https://doi.org/10.1007/s10584‐010‐0003‐7

144 Glaser, B., & Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de índio). Geochimica et Cosmochimica Acta, 82, 39–51. https://doi.org/10.1016/j.gca.2010.11.029

145 Glaser, P. H., Janssens, J. A., & Siegel, D. I. (1990). The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. The Journal of Ecology, 78(4), 1021. https://doi.org/10.2307/2260950

146 Gleason, R. A., & Euliss, N. H. J. (1998). Sedimentation of prairie wetlands. Great Plains Research, 8(1), 97–112.

147 Göckede, M., Kwon, M. J., Kittler, F., Heimann, M., Zimov, N., & Zimov, S. (2019). Negative feedback processes following drainage slow down permafrost degradation. Global Change Biology, 25(10), 3254–3266. https://doi.org/10.1111/gcb.14744

148 González, E., Cabezas, Á., Corenblit, D., & Steiger, J. (2014). Autochthonous versus allochthonous organic matter in recent soil C accumulation along a floodplain biogeomorphic gradient: An exploratory study. Journal of Environmental Geography, 7(1–2), 29–38. https://doi.org/10.2478/jengeo‐2014‐0004

149 Goodrich, J. P., Varner, R. K., Frolking, S., Duncan, B. N., & Crill, P. M. (2011). High‐frequency measurements of methane ebullition over a growing season at a temperate peatland site. Geophysical Research Letters, 38(7), 1–5. https://doi.org/10.1029/2011GL046915

150 Gorham, E. (1991). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1(2), 182–195. https://doi.org/doi.org/10.2307/1941811

151 Gribsholt, B., Kostka, J. E., & Kristensen, E. (2003). Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Marine Ecology Progress Series, 259, 237–251. https://doi.org/10.3354/meps259237

152 Griffin, T. M., Rabenhorst, M. C., & Fanning, D. S. (1989). Iron and trace metals in some tidal marsh soils of the Chesapeake Bay. Soil Science Society of America Journal, 53(4), 1010–1019. https://doi.org/10.2136/sssaj1989.03615995005300040004x

153 Grossart, H. P., Frindte, K., Dziallas, C., Eckert, W., & Tang, K. W. (2011). Microbial methane production in oxygenated water column of an oligotrophic lake. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19657–19661. https://doi.org/10.1073/pnas.1110716108

154 Guimond, J. A., Seyfferth, A. L., Moffett, K. B., & Michael, H. A. (2020). A physical‐biogeochemical mechanism for negative feedback between marsh crabs and carbon storage. Environmental Research Letters, 15(3). https://doi.org/10.1088/1748‐9326/ab60e2

155 Gupta, V., Smemo, K. A., Yavitt, J. B., Fowle, D., Branfireun, B., & Basiliko, N. (2013). Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environmental Science and Technology, 47(15), 8273–8279. https://doi.org/10.1021/es400484t

156 Gurney, K. E. B., Clark, R. G., Slattery, S. M., & Ross, L. C. M. (2017). Connecting the trophic dots: Responses of an aquatic bird species to variable abundance of macroinvertebrates in northern boreal wetlands. Hydrobiologia, 785(1), 1–17. https://doi.org/10.1007/s10750‐016‐2817‐4

157 Güsewell, S., & Freeman, C. (2005). Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios. Functional Ecology, 19(4), 582–593. https://doi.org/10.1111/j.1365‐2435.2005.01002.x

158 Güsewell, S., & Verhoeven, J. T. A. (2006). Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant and Soil, 287(1–2), 131–143. https://doi.org/10.1007/s11104‐006‐9050‐2

159 Hackney, C. T., & Bishop, T. D. (1981). A note on the relocation of marsh debris during a storm surge. Estuarine Coastal and Shelf Science, 12(5), 621–624. https://doi.org/10.1016/S0302‐3524(81)80087‐4

160 Haese, R. R., Wallmann, K., Dahmke, A., Kretzmann, U., Müller, P. J., & Schulz, H. D. (1997). Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochimica et Cosmochimica Acta, 61(1), 63–72. https://doi.org/10.1016/S0016‐7037(96)00312‐2

161 Hall, S. J., & Silver, W. L. (2013). Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Global Change Biology, 19(9), 2804–2813. https://doi.org/10.1111/gcb.12229

162 Hall, S. J., Silver, W. L., Timokhin, V. I., & Hammel, K. E. (2016). Iron addition to soil specifically stabilized lignin. Soil Biology and Biochemistry, 98, 95–98. https://doi.org/10.1016/j.soilbio.2016.04.010

163 Hanley, T. C., Kimbro, D. L., & Hughes, A. R. (2017). Stress and subsidy effects of seagrass wrack duration, frequency, and magnitude on salt marsh community structure. Ecology, 98(7), 1884–1895. https://doi.org/10.1002/ecy.1862

164 Hansel, C. M., Fendorf, S., Sutton, S., & Newville, M. (2001). Characterization of Fe plaque and associated metals on the roots of mine‐waste impacted aquatic plants. Environmental Science and Technology, 35, 3863–3868.

165 Harrison, R. B., Jones, W. M., Clark, D., Heise, B. A., & Fraser, L. H. (2017). Livestock grazing in intermountain depressional wetlands: effects on breeding waterfowl. Wetlands Ecology and Management, 25(4), 471–484. https://doi.org/10.1007/s11273‐017‐9529‐z

166 Harriss, R. C., Sebacher, D. I., & Day, F. P. (1982). Methane flux in the Great Dismal Swamp. Nature, 297(5868), 673–674. https://doi.org/10.1038/297673a0

167 Hartman, W. H., Richardson, C. J., Vilgalys, R., & Bruland, G. L. (2008). Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17842–17847. https://doi.org/10.1073/pnas.0808254105

168 Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., et al. (2013). Observations: Atmosphere and surface. In: T. F. Stocker, D. Qin, G.‐K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

169 Hedges, J. I., & Keil, R. G. (1995). Sedimentary organic matter preservation: An assessment and speculative synthesis. Marine Chemistry, 49, 81–115.

170 Hefting, M. M., Bobbink, R., & de Caluwe, H. (2003). Nitrous oxide emission and denitrification in chronically nitrate‐loaded riparian buffer zones. Journal of Environmental Quality, 32(4), 1194–1203. https://doi.org/10.2134/jeq2003.1194

171 Heitmann, T., Goldhammer, T., Beer, J., & Blodau, C. (2007). Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Global Change Biology, 13(8), 1771–1785. https://doi.org/10.1111/j.1365‐2486.2007.01382.x

172 Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton, T. I., Derry, L. A., & Valier, V. V. (2019). Preservation of natural organic carbon. Nature, 570, 228–238. https://doi.org/10.1038/s41586‐019‐1280‐6

173 Hemminga, M. A., van Soelen, J., & Koutstaal, B. P. (1990). Tidal dispersal of salt marsh insect larvae within the Westerschelde estuary. Ecography, 13(4), 308–315. https://doi.org/10.1111/j.1600‐0587.1990.tb00623.x

174 Henneberry, Y. K., Kraus, T. E. C., Nico, P. S., & Horwath, W. R. (2012). Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Organic Geochemistry, 48, 81–89. https://doi.org/10.1016/j.orggeochem.2012.04.005

175 Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., et al. (2015). A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1–43. https://doi.org/10.1890/ES14‐00534.1

176 Herbert, E. R., Schubauer‐Berigan, J., & Craft, C. B. (2018). Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling. Biogeochemistry, 138(2), 137–154. https://doi.org/10.1007/s10533‐018‐0436‐z

177 Hergoualc’h, K., & Verchot, L. V. (2014). Greenhouse gas emission factors for land use and land‐use change in Southeast Asian peatlands. Mitigation and Adaptation Strategies for Global Change, 19(6), 789–807. https://doi.org/10.1007/s11027‐013‐9511‐x

178 Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J., & De Ruiter, P. C. (2004). Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85(5), 1179–1192. https://doi.org/10.1890/02‐0251

179 Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83(4), 1026–1038. https://doi.org/10.1890/0012‐9658(2002)083[1026:COSDFA]2.0.CO;2

180 Hines, J., Reyes, M., Mozder, T. J., & Gessner, M. O. (2014). Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration. Global Change Biology, 20(12), 3780–3789. https://doi.org/10.1111/gcb.12704

181  Hines, M. E., Duddleston, K. N., & Kiene, R. P. (2001). Carbon flow to acetate and C1 compounds in northern wetlands. Geophysical Research Letters, 28(22), 4251–4254. https://doi.org/10.1029/2001GL012901

182 Hobbie, S. E. (2000). Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3(5), 484–494. https://doi.org/10.1007/s100210000042

183 Hockaday, W. C., Masiello, C. A., Randerson, J. T., Smernik, R. J., Baldock, J. A., Chadwick, O. A., & Harden, J. W. (2009). Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance. Journal of Geophysical Research: Biogeosciences, 114(2), 1–14. https://doi.org/10.1029/2008JG000803

184 Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M., Saleska, S. R., et al. (2014). Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 5819–5824. https://doi.org/10.1073/pnas.1314641111

185 Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H., Verbeke, B., et al. (2018). Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications, 9, 3640. https://doi.org/10.1038/s41467‐018‐06050‐2

186 Holden, J. (2005). Peatland hydrology and carbon release: Why small‐scale process matters. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1837), 2891–2913. https://doi.org/10.1098/rsta.2005.1671

187 Holgerson, M. A., Post, D. M., & Skelly, D. K. (2016). Reconciling the role of terrestrial leaves in pond food webs: A whole‐ecosystem experiment. Ecology, 97(7), 1771–1782. https://doi.org/10.1890/15‐1848.1

188 Holm, G. O., Perez, B. C., McWhorter, D. E., Krauss, K. W., Johnson, D. J., Raynie, R. C., & Killebrew, C. J. (2016). Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects. Wetlands, 36(3), 401–413. https://doi.org/10.1007/s13157‐016‐0746‐7

189 Holmquist, J. R., Windham‐Myers, L., Bernal, B., Byrd, K. B., Crooks, S., Gonneea, M. E., et al. (2018). Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters, 13(11), 115005. https://doi.org/10.1088/1748‐9326/aae157

190 Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., & Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9(3), 1053–1071. https://doi.org/10.5194/bg‐9‐1053‐2012

191 Hope, G., Chokkalingam, U., & Anwar, S. (2005). The stratigraphy and fire history of the Kutai Peatlands, Kalimantan, Indonesia. Quaternary Research, 64(3), 407–417. https://doi.org/10.1016/j.yqres.2005.08.009

192 Hopkinson, C. S. (1992). A comparison of ecosystem dynamics in freshwater wetlands. Estuaries, 15(4), 549–562. https://doi.org/10.2307/1352397

193 Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M., & Raymond, P. A. (2018). Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. Journal of Geophysical Research: Biogeosciences, 123(8), 2444–2465. https://doi.org/10.1029/2017JG004358

194 Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P., Kostka, J. E., et al. (2020). Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications, 11(1), 4–10. https://doi.org/10.1038/s41467‐020‐16311‐8

195 Hu, B., Shen, L., Lian, X., Zhu, Q., Liu, S., Huang, Q., et al. (2014). Evidence for nitrite‐dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proceedings of the National Academy of Sciences of the United States of America, 111(12), 4495–4500. https://doi.org/10.1073/pnas.1318393111

196 Hupp, C. R. (2000). Hydrology, geomorphology and vegetation of Coastal Plain rivers in the south‐eastern USA. Hydrological Processes, 14, 2991–3010. https://doi.org/10.1002/1099‐1085(200011/12)14:16/17<2991::AID‐HYP131>3.0.CO;2‐H

197 Hupp, C. R., Kroes, D. E., Noe, G. B., Schenk, E. R., & Day, R. H. (2019). Sediment trapping and carbon sequestration in floodplains of the Lower Atchafalaya Basin, LA: allochthonous versus autochthonous carbon sources. Journal of Geophysical Research: Biogeosciences, 124(3), 663–677. https://doi.org/10.1029/2018JG004533

198 Hutchens, J. J., Batzer, D. P., & Reese, E. (2004). Bioassessment of silvicultural impacts in streams and wetlands of the eastern United States. Water, Air, and Soil Pollution: Focus, 4(1), 37–53. https://doi.org/10.1023/B:WAFO.0000012827.95431.b8

199 Hutchinson, J. N. (1980). The record of peat wastage in the East Anglian fenlands at Holme Post, 1848–1978 A.D. The Journal of Ecology, 68(1), 229. https://doi.org/10.2307/2259253

200 Ipsilantis, I., & Sylvia, D. M. (2007). Abundance of fungi and bacteria in a nutrient‐impacted Florida wetland. Applied Soil Ecology, 35(2), 272–280. https://doi.org/10.1016/j.apsoil.2006.09.002

201 Jackson, C. R., & Vallaire, S. C. (2009). Effects of salinity and nutrients on microbial assemblages in Louisiana wetland sediments. Wetlands, 29(1), 277–287. https://doi.org/10.1672/08‐86.1

202 Jacob, D. L., Yellick, A. H., Kissoon, L. T. T., Asgary, A., Wijeyaratne, D. N., Saini‐Eidukat, B., & Otte, M. L. (2013). Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA. Environmental Pollution, 178, 211–219. https://doi.org/10.1016/j.envpol.2013.03.005

203 Jager, D. F., Wilmking, M., & Kukkonen, J. V. K. (2009). The influence of summer seasonal extremes on dissolved organic carbon export from a boreal peatland catchment: Evidence from one dry and one wet growing season. Science of the Total Environment, 407(4), 1373–1382. https://doi.org/10.1016/j.scitotenv.2008.10.005

204 Jassey, V. E. J., Reczuga, M. K., Zielińska, M., Słowińska, S., Robroek, B. J. M., Mariotte, P., et al. (2018). Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Global Change Biology, 24(3), 972–986. https://doi.org/10.1111/gcb.13928

205 Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1–2), 5–23. https://doi.org/10.1007/s10584‐006‐9178‐3

206 Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., et al. (2010). Microbial production of recalcitrant dissolved organic matter: Long‐term carbon storage in the global ocean. Nature Reviews Microbiology, 8(8), 593–599. https://doi.org/10.1038/nrmicro2386

207 Joabsson, A., Christensen, T. R., & Wallén, B. (1999). Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology and Evolution, 14(10), 385–388. https://doi.org/10.1016/S0169‐5347(99)01649‐3

208 Johnson, W. C., Millett, B. V, Gilmanov, T., Voldseth, R. A., Guntenspergen, G. R., & Naugle, D. E. (2005). Vulnerability of northern prairie wetlands to climate change. BioScience, 55(10), 863. https://doi.org/10.1641/0006‐3568(2005)055[0863:vonpwt]2.0.co;2

209 Joosten, H. (2010). The Global Peatland CO2 Picture. Ede, Netherlands. https://doi.org/10.1016/j.quascirev.2011.01.018

210 Joye, S. B., & Hollibaugh, J. T. (1995). Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science, 270(5236), 623–625.

211 Jutras, S., Plamondon, A. P., Hökkä, H., & Bégin, J. (2006). Water table changes following precommercial thinning on post‐harvest drained wetlands. Forest Ecology and Management, 235(1–3), 252–259. https://doi.org/10.1016/j.foreco.2006.08.335

212 Kadlec, R. H., & Reddy, K. R. (2001). Temperature effects in treatment wetlands. Water Environment Research, 73(5), 543–557. https://doi.org/10.2175/106143001X139614

213 Kaiser, K., & Guggenberger, G. (2000). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31(7–8), 711–725. https://doi.org/10.1016/S0146‐6380(00)00046‐2

214 Kammann, C., Hepp, S., Lenhart, K., & Müller, C. (2009). Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biology and Biochemistry, 41(3), 622–629. https://doi.org/10.1016/j.soilbio.2008.12.025

215 Kang, H., Kim, S. Y., Fenner, N., & Freeman, C. (2005). Shifts of soil enzyme activities in wetlands exposed to elevated CO2. Science of the Total Environment, 337(1–3), 207–212. https://doi.org/10.1016/j.scitotenv.2004.06.015

216 Kao‐Kniffin, J., Freyre, D. S., & Balser, T. C. (2010). Methane dynamics across wetland plant species. Aquatic Botany, 93(2), 107–113. https://doi.org/10.1016/j.aquabot.2010.03.009

217 Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518–527. https://doi.org/10.1890/13‐0640.1

218 Keil, R. G., Montluçon, D. B., Prahl, F. G., & Hedges, J. I. (1994). Sorptive preservation of labile organic matter in marine sediments. Nature, 370, 549–552. https://doi.org/doi.org/10.1038/370549a0

219 Keiluweit, M., Nico, P. S., Kleber, M., & Fendorf, S. (2016). Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry, 127(2–3), 157–171. https://doi.org/10.1007/s10533‐015‐0180‐6

220 Keller, J. K., & Bridgham, S. D. (2007). Pathways of anaerobic carbon cycling across an ombrotrophic‐minerotrophic peatland gradient. Limnology and Oceanography, 52(1), 96–107. https://doi.org/10.4319/lo.2007.52.1.0096

221 Keller, J. K., Bridgham, S. D., Chapin, C. T., & Iversen, C. M. (2005). Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen. Soil Biology and Biochemistry, 37(6), 1197–1204. https://doi.org/10.1016/j.soilbio.2004.11.018

222 Keller, J. K., Wolf, A. A., Weisenhorn, P. B., Drake, B. G., & Megonigal, J. P. (2009). Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry, 96, 101–117. https://doi.org/10.1007/s10533‐009‐9347‐3

223 Keller, J. K., Weisenhorn, P. B., & Megonigal, J. P. (2009). Humic acids as electron acceptors in wetland decomposition. Soil Biology and Biochemistry, 41(7), 1518–1522. https://doi.org/10.1016/j.soilbio.2009.04.008

224 Keppler, F., Hamilton, J. T. G., Braß, M., & Röckmann, T. (2006). Methane emissions from terrestrial plants under aerobic conditions. Nature, 439, 187–191. https://doi.org/10.1038/nature04420

225 Keuskamp, J. A., Hefting, M. M., Dingemans, B. J. J., Verhoeven, J. T. A., & Feller, I. C. (2015). Effects of nutrient enrichment on mangrove leaf litter decomposition. Science of the Total Environment, 508, 402–410. https://doi.org/10.1016/j.scitotenv.2014.11.092

226 Khan, H., & Brush, G. S. (1994). Nutrient and metal accumulation in a freshwater tidal marsh. Estuaries, 17(2), 345–360. https://doi.org/10.2307/1352668

227 Kim, S. Y., Veraart, A. J., Meima‐Franke, M., & Bodelier, P. L. E. (2015). Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments. Geoderma, 259–260, 354–361. https://doi.org/10.1016/j.geoderma.2015.03.015

228 Kitti, H., Forbes, B. C., & Oksanen, J. (2009). Long‐ and short‐term effects of reindeer grazing on tundra wetland vegetation. Polar Biology, 32(2), 253–261. https://doi.org/10.1007/s00300‐008‐0526‐9

229 Kleber, M., Sollins, P., & Sutton, R. (2007). A conceptual model of organo‐mineral interactions in soils: Self‐assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85(1), 9–24. https://doi.org/10.1007/s10533‐007‐9103‐5

230 Klemedtsson, L., Von Arnold, K., Weslien, P., & Gundersen, P. (2005). Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology, 11(7), 1142–1147. https://doi.org/10.1111/j.1365‐2486.2005.00973.x

231 Klopatek, J. M. (1988). Some thoughts on using a landscape framework to address cumulative impacts on wetland food chain support. Environmental Management, 12(5), 703–711. https://doi.org/10.1007/BF01867547

232 Knicker, H., Scaroni, A. W., & Hatcher, P. G. (1996). 13C and 15N NMR spectroscopic investigation on the formation of fossil algal residues. Organic Geochemistry, 24(6–7), 661–669. https://doi.org/10.1016/0146‐6380(96)00057‐5

233 Knittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: Progress with an unknown process. Annual Review of Microbiology, 63(1), 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130

234  Knorr, K. H. (2013). DOC‐dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – Are DOC exports mediated by iron reduction/oxidation cycles? Biogeosciences, 10(2), 891–904. https://doi.org/10.5194/bg‐10‐891‐2013

235 Knox, S. H., Sturtevant, C., Matthes, J. H., Koteen, L., Verfaillie, J., & Baldocchi, D. (2015). Agricultural peatland restoration: Effects of land‐use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento‐San Joaquin Delta. Global Change Biology, 21(2), 750–765. https://doi.org/10.1111/gcb.12745

236 Kögel‐Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34, 139–162. https://doi.org/10.1016/S0038‐0717(01)00158‐4

237 Kon, K., Hoshino, Y., Kanou, K., Okazaki, D., Nakayama, S., & Kohno, H. (2012). Importance of allochthonous material in benthic macrofaunal community functioning in estuarine salt marshes. Estuarine, Coastal and Shelf Science, 96(1), 236–244. https://doi.org/10.1016/j.ecss.2011.11.015

238 Korrensalo, A., Mehtätalo, L., Alekseychik, P., Uljas, S., Mammarella, I., Vesala, T., & Tuittila, E.‐S. (2020). Varying vegetation composition, respiration and photosynthesis decrease temporal variability of the CO2 sink in a boreal bog. Ecosystems, 23, 842–858. https://doi.org/10.1007/s10021‐019‐00434‐1

239 Kostka, J. E., Roychoudhury, A., & van Cappellen, P. (2002). Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry, 60, 49–76. https://doi.org/10.1023/A:1016525216426

240 Kreutzweiser, D. P., Hazlett, P. W., & Gunn, J. M. (2008). Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environmental Reviews, 16, 157–179. https://doi.org/10.1139/A08‐006

241 Kristensen, E., & Holmer, M. (2001). Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3– and SO42–), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochimica et Cosmochimica Acta, 65(3), 419–433. https://doi.org/10.1016/S0016‐7037(00)00532‐9

242 Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), 201–219. https://doi.org/10.1016/j.aquabot.2007.12.005

243 Kristensen, E., Mangion, P., Tang, M., Flindt, M. R., Holmer, M., & Ulomi, S. (2011). Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests. Biogeochemistry, 103(1), 143–158. https://doi.org/10.1007/s10533‐010‐9453‐2

244 Kroeger, K. D., Crooks, S., Moseman‐Valtierra, S., & Tang, J. (2017). Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention. Scientific Reports, 7(1), 11914. https://doi.org/10.1038/s41598‐017‐12138‐4

245 Kuehn, K. A., Lemke, M. J., Suberkropp, K., & Wetzel, R. G. (2000). Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnology and Oceanography, 45(4), 862–870. https://doi.org/10.4319/lo.2000.45.4.0862

246 Küsel, K., Dorsch, T., Acker, G., & Stackebrandt, E. (1999). Microbial reduction of Fe(III) in acidic sediments: Isolation of Acidiphilium cryptum JF‐5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Applied and Environmental Microbiology, 65(8), 3633–3640. https://doi.org/10.1128/aem.65.8.3633‐3640.1999

247 Kuwata, M., Kai, F. M., Yang, L., & Itoh, M. (2016). Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire. Journal of Geophysical Research: Atmospheres, 122, 1281–1292. https://doi.org/10.1002/2016JD025897

248 Laanbroek, H. J. (2010). Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini‐review. Annals of Botany, 105(1), 141–153. https://doi.org/10.1093/aob/mcp201

249 LaCroix, R., Tfaily, M., McCreight, M., Jones, M. E., Spokas, L., & Keiluweit, M. (2018). Shifting mineral and redox controls on carbon cycling in seasonally flooded soils. Biogeosciences Discussions, 1–36. https://doi.org/10.5194/bg‐2018‐432

250 Lai, D. Y. F. (2009). Methane dynamics in northern peatlands: A review. Pedosphere, 19(4), 409–421. https://doi.org/10.1016/S1002‐0160(09)00003‐4

251 Laiho, R. (2006). Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry, 38(8), 2011–2024. https://doi.org/10.1016/j.soilbio.2006.02.017

252 Lalonde, K., Mucci, A., Ouellet, A., & Gélinas, Y. (2012). Preservation of organic matter in sediments promoted by iron. Nature, 483(7388), 198–200. https://doi.org/10.1038/nature10855

253 Landre, A. L., Watmough, S. A., & Dillon, P. J. (2009). The effects of dissolved organic carbon, acidity and seasonality on metal geochemistry within a forested catchment on the Precambrian Shield, central Ontario, Canada. Biogeochemistry, 93(3), 271–289. https://doi.org/10.1007/s10533‐009‐9305‐0

254 Langley, J. A., & Megonigal, J. P. (2010). Ecosystem response to elevated CO2 levels limited by nitrogen‐induced plant species shift. Nature, 466(7302), 96–99. https://doi.org/10.1038/nature09176

255 Langley, J. A., Mckee, K. L., Cahoon, D. R., Cherry, J. A., & Megonigal, J. P. (2009). Elevated CO2 stimulates marsh elevation gain, counterbalancing sea‐level rise. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6182–6186. https://doi.org/10.1073/pnas.0807695106

256 LaRowe, D. E., & Van Cappellen, P. (2011). Degradation of natural organic matter: A thermodynamic analysis. Geochimica et Cosmochimica Acta, 75(8), 2030–2042. https://doi.org/10.1016/j.gca.2011.01.020

257 LaRowe, D. E., Arndt, S., Bradley, J. A., Estes, E. R., Hoarfrost, A., Lang, S. Q., et al. (2020). The fate of organic carbon in marine sediments ‐ New insights from recent data and analysis. Earth‐Science Reviews, 204(August 2019), 103146. https://doi.org/10.1016/j.earscirev.2020.103146

258 Lee, A. A., & Bukaveckas, P. A. (2002). Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities. Aquatic Botany, 74(4), 273–285. https://doi.org/10.1016/S0304‐3770(02)00128‐6

259  Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68. https://doi.org/10.1038/nature16069

260 Leifeld, J., Steffens, M., & Galego‐Sala, A. (2012). Sensitivity of peatland carbon loss to organic matter quality. Geophysical Research Letters, 39(14), 1–6. https://doi.org/10.1029/2012GL051856

261 Lenhart, K., Bunge, M., Ratering, S., Neu, T. R., Schüttmann, I., Greule, M., et al. (2012). Evidence for methane production by saprotrophic fungi. Nature Communications, 3. https://doi.org/10.1038/ncomms2049

262 Liu, S., Hu, R., Zhao, J., Brüggemann, N., Bol, R., Cai, G., et al. (2014). Flooding effects on soil phenol oxidase activity and phenol release during rice straw decomposition. Journal of Plant Nutrition and Soil Science, 177(4), 541–547. https://doi.org/10.1002/jpln.201300356

263 Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., et al. (2014). A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24(9), 1028–1042. https://doi.org/10.1177/0959683614538073

264 Luo, M., Liu, Y., Huang, J., Xiao, L., Zhu, W., Duan, X., & Tong, C. (2018). Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: A rhizobox study. Plant and Soil, 433(1–2), 83–100. https://doi.org/10.1007/s11104‐018‐3827‐y

265 Luo, M., Zhai, Z., Ye, R., Xing, R., Huang, J., & Tong, C. (2020). Carbon mineralization in tidal freshwater marsh soils at the intersection of low‐level saltwater intrusion and ferric iron loading. Catena, 193(January), 104644. https://doi.org/10.1016/j.catena.2020.104644

266 Ma, Z., Melville, D. S., Liu, J., Chen, Y., Yang, H., Ren, W., et al. (2014). Rethinking China’s new great wall. Science, 346(6212), 912–914. https://doi.org/10.1126/science.1257258

267 MacCarthy, R., & Davey, C. B. (1976). Nutritional problems of Pinus taeda L. (loblolly pine) growing on pocosin soil. Soil Science Society of America Journal, 40(4), 582–585. https://doi.org/10.2136/sssaj1976.03615995004000040034x

268 MacDonald, J. A., Fowler, D., Hargreaves, K. J., Skiba, U., Leith, I. D., & Murray, M. B. (1998). Methane emission rates from a northern wetland: Response to temperature, water table and transport. Atmospheric Environment, 32(19), 3219–3227. https://doi.org/10.1016/S1352‐2310(97)00464‐0

269 Mahieu, N., Olk, D. C., & Randall, E. W. (2002). Multinuclear magnetic resonance analysis of two humic acid fractions from lowland rice soils. Journal of Environmental Quality, 31(2), 421–430. https://doi.org/10.2134/jeq2002.4210

270 Malhotra, A., Brice, D., Childs, J., Graham, J., Hobbie, E., Vander Stel, H., et al. (2020). Peatland warming strongly increases fine‐root growth. Proceedings of the National Academy of Sciences, 117(30), 202003361. https://doi.org/10.1073/pnas.2003361117

271 Männistö, E., Korrensalo, A., Alekseychik, P., Mammarella, I., Peltola, O., Vesala, T., & Tuittila, E. S. (2019). Multi‐year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog. Biogeosciences, 16(11), 2409–2421. https://doi.org/10.5194/bg‐16‐2409‐2019

272 Marlier, M. E., DeFries, R. S., Kim, P. S., Koplitz, S. N., Jacob, D. J., Mickley, L. J., & Myers, S. S. (2015). Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environmental Research Letters, 10(8), 85005. https://doi.org/10.1088/1748‐9326/10/8/085005

273 Marsh, A. S., Rasse, D. P., Drake, B. G., & Megonigal, J. P. (2005). Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries, 28(5), 694–704. https://doi.org/10.1007/BF02732908

274 Masiello, C. A., Gallagher, M. E., Randerson, J. T., Deco, R. M., & Chadwick, O. A. (2008). Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. Journal of Geophysical Research: Biogeosciences, 113(3), 1–9. https://doi.org/10.1029/2007JG000534

275 Maucieri, C., Barbera, A. C., Vymazal, J., & Borin, M. (2017). A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agricultural and Forest Meteorology, 236, 175–193. https://doi.org/10.1016/j.agrformet.2017.01.006

276 Mayer, L. M. (1994a). Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chemical Geology, 114(3–4), 347–363. https://doi.org/10.1016/0009‐2541(94)90063‐9

277 Mayer, L. M. (1994b). Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58(4), 1271–1284. https://doi.org/10.1016/0016‐7037(94)90381‐6

278 McAvoy, D. C. (1988). Seasonal trends of aluminum chemistry in a second‐order Massachusetts stream. Journal of Environmental Quality, 17(4), 528–534. https://doi.org/10.2134/jeq1988.00472425001700040002x

279 McCarty, G. W., & Ritchie, J. C. (2002). Impact of soil movement on carbon sequestration in agricultural ecosystems. Environmental Pollution, 116(3), 423–430. https://doi.org/10.1016/S0269‐7491(01)00219‐6

280 McCorvie, M. R., & Lant, C. L. (1993). Drainage district formation and the loss of midwestern wetlands, 1850–1930. Agricultural History, 67(4), 13–39.

281 McLatchey, G. P., & Reddy, K. R. (1998). Regulation of organic matter decomposition and nutrient release in a wetland soil. Journal of Environmental Quality, 27(5), 1268–1274. https://doi.org/10.2134/jeq1998.00472425002700050036x

282 Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., et al. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004

283 McNicol, G., Sturtevant, C. S., Knox, S. H., Dronova, I., Baldocchi, D. D., & Silver, W. L. (2017). Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Global Change Biology, 23(7), 2768–2782. https://doi.org/10.1111/gcb.13580

284 Megonigal, J. P., & Neubauer, S. C. (2019). Biogeochemistry of tidal freshwater wetlands. In G. M. E. Perillo, E. Wolanski, D. R. Cahoon, & C. S. Hopkinson (Eds.), Coastal wetlands: An integrated ecosystem approach (2nd ed., pp. 641–683). Cambridge, MA: Elsevier. https://doi.org/10.1016/B978‐0‐444‐63893‐9.00019‐8641

285  Megonigal, J. P., & Schlesinger, W. H. (2002). Methane‐limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles, 16(4), 1088. https://doi.org/10.1029/2001GB001594

286 Megonigal, J. P., Whalen, S. C., Tissue, D. T., Bovard, B. D., Albert, D. B., & Allen, A. S. (1999). A plant‐soil‐atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Science Society of America Journal, 63(3), 665–671. https://doi.org/10.2136/sssaj1999.03615995006300030033x

287 Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2004). Anaerobic metabolism: Linkages to trace gases and aerobic metabolism. In W. H. Schlesinger (Ed.), Biogeochemistry (pp. 317–424). Oxford, United Kingdom: Elsevier‐Pergamon.

288 Mendelssohn, I. A., & Morris, J. T. (2000). Eco‐physiological controls on the productivity of Spartina alterniflora Loisel. In: M. Weinstein & D. A. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 59–80). Dordrecht, Netherlands: Kluwer Academic Publishing.

289 Mendelssohn, I. A., Kleiss, B. A., & Wakely, J. S. (1995). Factors controlling the formation of oxidized root channels: A review. Wetlands, 15(1), 37–46. https://doi.org/10.1007/BF03160678

290 Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(2001), 25–50. https://doi.org/10.1016/S1164‐5563(01)01067‐6

291 Micheli, E. R., & Kirchner, J. W. (2002). Effects of wet meadow riparian vegetation on streambank erosion. 2. Measurements of vegetated bank strength and consequences for failure mechanics. Earth Surface Processes and Landforms, 27(7), 687–697. https://doi.org/10.1002/esp.340

292 Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well‐Being: Wetlands and Water Synthesis. Washington D.C.: World Resources Institute.

293 Miller, W. D., Neubauer, S. C., & Anderson, I. C. (2001). Effects of sea level induced disturbances on high salt marsh metabolism. Estuaries, 24(3), 357–367. https://doi.org/10.2307/1353238

294 Mitra, S., Wassmann, R., & Vlek, P. L. G. (2005). An appraisal of global wetland area and its organic carbon stock. Current Science, 88(1), 25–35.

295 Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van Wesenbeeck, B. K., et al. (2014). Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7(10), 727–731. https://doi.org/10.1038/NGEO2251

296 Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Høgåsen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450(7169), 537–540. https://doi.org/10.1038/nature06316

297 Moomaw, W. R., Chmura, G. L., Davies, G. T., Finlayson, C. M., Middleton, B. A., Natali, S. M., et al. (2018). Wetlands in a changing climate: Science, policy and management. Wetlands, 38(2), 183–205. https://doi.org/10.1007/s13157‐018‐1023‐8

298 Moor, H., Rydin, H., Hylander, K., Nilsson, M. B., Lindborg, R., & Norberg, J. (2017). Towards a trait‐based ecology of wetland vegetation. Journal of Ecology, 105(6), 1623–1635. https://doi.org/10.1111/1365‐2745.12734

299 Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. G., Freeman, C., et al. (2013). Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature, 493(7434), 660–663. https://doi.org/10.1038/nature11818

300 Moore, T. R., & Knowles, R. (1989). The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science, 69(1), 33–38. https://doi.org/10.4141/cjss89‐004

301 Moore, T. R., Large, D., Talbot, J., Wang, M., & Riley, J. L. (2018). The stoichiometry of carbon, hydrogen, and oxygen in peat. Journal of Geophysical Research: Biogeosciences, 123(10), 3101–3110. https://doi.org/10.1029/2018JG004574

302 Morris, J. T., & Jensen, A. (1998). The carbon balance of grazed and non‐grazed Spartina alterniflora saltmarshes at Skallingen, Denmark. Journal of Ecology, 86(2), 229–242. https://doi.org/10.1046/j.1365‐2745.1998.00251.x

303 Morris, J. T., Sundareshwar, P. V, Nietch, C. T., Kjerfve, B., & Cahoon, D. R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869–2877. https://doi.org/10.1890/0012‐9658(2002)083[2869:ROCWTR]2.0.CO;2

304 Moseman‐Valtierra, S., Gonzalez, R., Kroeger, K. D., Tang, J., Chao, W. C., Crusius, J., et al. (2011). Short‐term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmospheric Environment, 45(26), 4390–4397. https://doi.org/10.1016/j.atmosenv.2011.05.046

305 Mueller, P., Hager, R. N., Meschter, J. E., Mozdzer, T. J., Langley, J. A., Jensen, K., & Megonigal, J. P. (2016). Complex invader‐ecosystem interactions and seasonality mediate the impact of non‐native Phragmites on CH4 emissions. Biological Invasions, 18(9), 2635–2647. https://doi.org/10.1007/s10530‐016‐1093‐6

306 Mueller, P., Jensen, K., & Megonigal, J. P. (2016). Plants mediate soil organic matter decomposition in response to sea level rise. Global Change Biology, 22(1), 404–414. https://doi.org/10.1111/gcb.13082

307 Muhr, J., Juliane, H., Otieno, D. O., & Borken, W. (2011). Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany. Ecological Applications, 21(2), 391–401. https://doi.org/10.1890/09‐1251.1

308 Mulholland, P. J., & Kuenzler, E. J. (1979). Organic carbon export from upland and forested wetland watersheds. Limnology and Oceanography, 24(5), 960–966. https://doi.org/10.4319/lo.1979.24.5.0960

309 Mwamba, M. J., & Torres, R. (2002). Rainfall effects on marsh sediment redistribution, North Inlet, South Carolina, USA. Marine Geology, 189(3–4), 267–287. https://doi.org/10.1016/S0025‐3227(02)00482‐6

310 Myhre, G., Shindell, D., Bréon, F.‐M., Collins, W., Fuglestvedt, J. S., Huang, J., et al. (2013). Anthropogenic and natural radiative forcing. In: T. F. Stocker, D. Qin, G.‐K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659–740). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

311 Myneni, S. C. B., Brown, J. T., Martinez, G. A., & Meyer‐Ilse, W. (1999). Imaging of humic substance macromolecular structures in water and soils. Science, 286(5443), 1335–1337. https://doi.org/10.1126/science.286.5443.1335

312  Nag, S. K., Nandy, S. K., Roy, K., Sarkar, U. K., & Das, B. K. (2019). Carbon balance of a sewage‐fed aquaculture wetland. Wetlands Ecology and Management, 27(2–3), 311–322. https://doi.org/10.1007/s11273‐019‐09661‐8

313 Needelman, B. A., Emmer, I. M., Oreska, M. P. J., & Megonigal, J. P. (2018). Blue carbon accounting for carbon markets. In: L.‐M. Windham‐Myers, S. Crooks, & T. Troxler‐Gann (Eds.), A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Practice, and Policy (pp. 283–292). Boca Raton, FL: CRC Press.

314 Needelman, B. A., Emmer, I. M., Emmett‐Mattox, S., Crooks, S., Megonigal, J. P., Myers, D., et al. (2018). The science and policy of the Verified Carbon Standard methodology for tidal wetland and seagrass restoration. Estuaries and Coasts, 41(8), 2159–2171. https://doi.org/10.1007/s12237‐018‐0429‐0

315 Neely, R. K., & Davis, C. B. (1985). Nitrogen and phosphorus fertilization of Sparganium eurycarpum Engelm. and Typha glauca Godr. stands. I. Emergent plant production. Aquatic Botany, 22(3–4), 347–361. https://doi.org/10.1016/0304‐3770(85)90009‐9

316 Nelson, P. N., Dictor, M. C., & Soulas, G. (1994). Availability of organic carbon in soluble and particle‐size fractions from a soil profile. Soil Biology and Biochemistry, 26(11), 1549–1555. https://doi.org/10.1016/0038‐0717(94)90097‐3

317 Neubauer, S. C. (2013). Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries and Coasts, 36(3), 491–507. https://doi.org/10.1007/s12237‐011‐9455‐x

318 Neubauer, S. C., & Anderson, I. C. (2003). Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York River estuary. Limnology and Oceanography, 48(1), 299–307. https://doi.org/10.4319/lo.2003.48.1.0299

319 Neubauer, S. C., & Megonigal, J. P. (2015). Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems, 18(6), 1000–1013. https://doi.org/10.1007/s10021‐015‐9879‐4

320 Neubauer, S. C., & Verhoeven, J. T. A. (2019). Wetland effects on global climate: Mechanisms, impacts, and management recommendations. In: S. An & J. T. A. Verhoeven (Eds.), Wetlands: Ecosystem Services, Restoration and Wise Use, Ecological Studies 238 (pp. 39–62). Springer Nature. https://doi.org/10.1007/978‐3‐030‐14861‐4_3

321 Neubauer, S. C., Miller, W. D., & Anderson, I. C. (2000). Carbon cycling in a tidal freshwater marsh ecosystem: A carbon gas flux study. Marine Ecology Progress Series, 199, 13–30. https://doi.org/10.3354/meps199013

322 Neubauer, S. C., Anderson, I. C., Constantine, J. A., & Kuehl, S. A. (2002). Sediment deposition and accretion in a mid‐Atlantic (U.S.A.) tidal freshwater marsh. Estuarine, Coastal and Shelf Science, 54(4), 713–727. https://doi.org/10.1006/ecss.2001.0854

323 Neubauer, S. C., Anderson, I. C., & Neikirk, B. B. (2005). Nitrogen cycling and ecosystem exchanges in a Virginia tidal freshwater marsh. Estuaries, 28(6), 909–922. https://doi.org/10.1007/BF02696019

324 Neubauer, S. C., Givler, K., Valentine, S., & Megonigal, J. P. (2005). Seasonal patterns and plant‐mediated controls of subsurface wetland biogeochemistry. Ecology, 86(12), 3334–3344. https://doi.org/10.1890/04‐1951

325 Neubauer, S. C., Franklin, R. B., & Berrier, D. J. (2013). Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences, 10(12), 8171–8183. https://doi.org/10.5194/bg‐10‐8171‐2013

326 Niu, Z., Zhang, H., Wang, X., Yao, W., Zhou, D., Zhao, K., et al. (2012). Mapping wetland changes in China between 1978 and 2008. Chinese Science Bulletin, 57(22), 2813–2823. https://doi.org/10.1007/s11434‐012‐5093‐3

327 De Nobili, M., Bravo, C., & Chen, Y. (2020). The spontaneous secondary synthesis of soil organic matter components: A critical examination of the soil continuum model theory. Applied Soil Ecology, 154(January), 103655. https://doi.org/10.1016/j.apsoil.2020.103655

328 O’Connor, J. J., Fest, B. J., Sievers, M., & Swearer, S. E. (2020). Impacts of land management practices on blue carbon stocks and greenhouse gas fluxes in coastal ecosystems—A meta‐analysis. Global Change Biology, 26(3), 1354–1366. https://doi.org/10.1111/gcb.14946

329 Odum, W. E., Odum, E. P., & Odum, H. T. (1995). Nature’s pulsing paradigm. Estuaries, 18(4), 547–555. https://doi.org/10.2307/1352375

330 Olivares, C. I., Zhang, W., Uzun, H., Erdem, C. U., Majidzadeh, H., Trettin, C. C., et al. (2019). Optical in‐situ sensors capture dissolved organic carbon (DOC) dynamics after prescribed fire in high‐DOC forest watersheds. International Journal of Wildland Fire, 28(10), 761–768. https://doi.org/10.1071/WF18175

331 Oremland, R. S., Marsh, L. M., & Polcin, S. (1982). Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature, 296(March), 143–145. https://doi.org/10.1038/296143a0

332 Padgett, D. E., & Celio, D. A. (1990). A newly discovered role for aerobic fungi in anaerobic salt marsh soils. Mycologia, 82(6), 791. https://doi.org/10.2307/3760170

333 Paerl, H. W., Pinckney, J. L., Fear, J. M., & Peierls, B. L. (1998). Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary. Marine Ecology Progress Series, 166, 17–25. https://doi.org/10.3354/meps166017

334 Paerl, H. W., Crosswell, J. R., Van Dam, B., Hall, N. S., Rossignol, K. L., Osburn, C. L., et al. (2018). Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry, 141(3), 307–332. https://doi.org/10.1007/s10533‐018‐0438‐x

335 Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 61–65. https://doi.org/10.1038/nature01131

336 Page, S. E., Hosciło, A., Wösten, H., Jauhiainen, J., Silvius, M., Rieley, J., et al. (2009). Restoration ecology of lowland tropical peatlands in Southeast Asia: Current knowledge and future research directions. Ecosystems, 12(6), 888–905. https://doi.org/10.1007/s10021‐008‐9216‐2

337 Pangala, S. R., Enrich‐Prast, A., Basso, L. S., Peixoto, R. B., Bastviken, D., Hornibrook, E. R. C., et al. (2017). Large emissions from floodplain trees close the Amazon methane budget. Nature, 552(7684), 230–234. https://doi.org/10.1038/nature24639

338  De Paolis, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere, 34(8), 1693–1704. https://doi.org/10.1016/S0045‐6535(97)00026‐X

339 Parkes, R. J., Gibson, G. R., Mueller‐Harvey, I., Buckingham, J. W., & Herbert, R. A. (1989). Determination of the substrates for sulphate‐reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. Journal of General Microbiology, 135(1), 175–187. https://doi.org/10.1099/00221287‐135‐1‐175

340 Pärn, J., Verhoeven, J. T. A., Butterbach‐Bahl, K., Dise, N. B., Ullah, S., Aasa, A., et al. (2018). Nitrogen‐rich organic soils under warm well‐drained conditions are global nitrous oxide emission hotspots. Nature Communications, 9(1), 1–8. https://doi.org/10.1038/s41467‐018‐03540‐1

341 Parton, W. J., Mosier, A. R., Ojima, D. S., Valentine, D. W., Schimel, D. S., Weier, K., & Kulmala, A. E. (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochemical Cycles, 10, 401–412. https://doi.org/10.1029/96GB01455

342 Pastor, J., Solin, J., Bridgham, S. D., Updegraff, K., Harth, C., Weishampel, P., & Dewey, B. (2003). Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos, 100(2), 380–386. https://doi.org/10.1034/j.1600‐0706.2003.11774.x

343 Pawson, R. R., Evans, M. G., & Allott, T. E. H. A. (2012). Fluvial carbon flux from headwater peatland streams: Significance of particulate carbon flux. Earth Surface Processes and Landforms, 37(11), 1203–1212. https://doi.org/10.1002/esp.3257

344 Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS One, 7(9), e43542. https://doi.org/10.1371/journal.pone.0043542

345 Petrescu, A. M. R., Lohila, A., Tuovinen, J.‐P., Baldocchi, D. D., Desai, A. R., Roulet, N. T., et al. (2015). The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences, 112(15), 4594–4599. https://doi.org/10.1073/pnas.1416267112

346 Petrone, K. C., Hinzman, L. D., Shibata, H., Jones, J. B., & Boone, R. D. (2007). The influence of fire and permafrost on sub‐arctic stream chemistry during storms. Hydrological Processes, 21, 423–434. https://doi.org/10.1002/hyp.6247

347 Petrone, R. M., Waddington, J. M., & Price, J. S. (2003). Ecosystem‐scale flux of CO2 from a restored vacuum harvested peatland. Wetlands Ecology and Management, 11(6), 419–432. https://doi.org/10.1023/B:WETL.0000007192.78408.62

348 Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31(5), 831–842. https://doi.org/10.1007/s13157‐011‐0197‐0

349 Poindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., & Variano, E. A. (2016). The contribution of an overlooked transport process to a wetland’s methane emissions. Geophysical Research Letters, 43, 6276–6284. https://doi.org/10.1002/2016GL068782

350 Pracht, L. E., Tfaily, M. M., Ardissono, R. J., & Neumann, R. B. (2018). Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: Tracking carbon compositional change during microbial utilization. Biogeosciences, 15(6), 1733–1747. https://doi.org/10.5194/bg‐15‐1733‐2018

351 Prananto, J. A., Minasny, B., Comeau, L., Rudiyanto, R., & Grace, P. (2020). Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change Biology, 26(8), 4583–4600. https://doi.org/10.1111/gcb.15147

352 Pschenyckyj, C. M., Clark, J. M., Shaw, L. J., Griffiths, R. I., & Evans, C. D. (2020). Effects of acidity on dissolved organic carbon in organic soil extracts, pore water and surface litters. Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.135585

353 Raghoebarsing, A. A., Pol, A., Van De Pas‐Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921. https://doi.org/10.1038/nature04617

354 Randerson, J. T., Masiello, C. A., Still, C. J., Rahn, T., Poorter, H., & Field, C. B. (2006). Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Global Change Biology, 12(2), 260–271. https://doi.org/10.1111/j.1365‐2486.2006.01099.x

355 Raymond, P. A., & Hopkinson, C. S. (2003). Ecosystem modulation of dissolved carbon age in a temperate marsh‐dominated estuary. Ecosystems, 2003(6), 694–705. https://doi.org/10.1007/s10021‐002‐0213‐6

356 Raymond, P. A., Bauer, J. E., Caraco, N. F., Cole, J. J., Longworth, B., & Petsch, S. T. (2004). Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Marine Chemistry, 92(1‐4 Spec. Iss.), 353–366. https://doi.org/10.1016/j.marchem.2004.06.036

357 Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of Wetlands: Science and Applications. Boca Raton, FL: CRC Press.

358 Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8), 597–607. https://doi.org/10.1038/ngeo1830

359 Reid, M. C., Tripathee, R., Schäfer, K. V. R., & Jaffé, P. R. (2013). Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments. Journal of Geophysical Research: Biogeosciences, 118(4), 1802–1813. https://doi.org/10.1002/2013JG002438

360 Rejmánková, E., & Houdková, K. (2006). Wetland plant decomposition under different nutrient conditions: What is more important, litter quality or site quality? Biogeochemistry, 80(3), 245–262. https://doi.org/10.1007/s10533‐006‐9021‐y

361 Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000‐2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas.1510272113

362 Richardson, C. J. (2003). Pocosins: Hydrologically isolated or integrated wetlands on the landscape? Wetlands, 23(3), 563–576. https://doi.org/10.1672/0277‐5212(2003)023[0563:PHIOIW]2.0.CO;2

363  Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., & Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 6416(1991), 6413–6416.

364 Riedel, T., Zak, D., Biester, H., & Dittmar, T. (2013). Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10101–10105. https://doi.org/10.1073/pnas.1221487110

365 Rixen, T., Baum, A., Wit, F., & Samiaji, J. (2016). Carbon leaching from tropical peat soils and consequences for carbon balances. Frontiers in Earth Science, 4(July). https://doi.org/10.3389/feart.2016.00074

366 Roden, E. E., & Wetzel, R. G. (1996). Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnology and Oceanography, 41(8), 1733–1748. https://doi.org/10.4319/lo.1996.41.8.1733

367 Roslev, P., & King, G. M. (1996). Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology, 19(2), 105–115. https://doi.org/10.1016/0168‐6496(95)00084‐4

368 Roychoudhury, A. N., Kostka, J. E., & Van Cappellen, P. (2003). Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science, 57(5–6), 1183–1193. https://doi.org/10.1016/S0272‐7714(03)00058‐1

369 Rozsa, R. (1995). Human impacts on tidal wetlands: History and regulations. In G. D. Dreyer & W. A. Niering (Eds.), Tidal Marshes of Long Island Sound: Ecology, History, and Restoration (pp. 42–50). New London, CT: Connecticut College Arboretum.

370 Rudolph, H., & Samland, J. (1985). Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry, 24(4), 745–749. https://doi.org/10.1016/S0031‐9422(00)84888‐8

371 Sabine, C. L., Heimann, M., Artaxo, P., Bakker, D. C. E., Chen, C.‐T. A., Field, C. B., et al. (2004). Current status and past trends of the global carbon cycle. In: C. B. Field & M. R. Raupach (Eds.), Global carbon cycle: Integrating humans, climate, and the natural world (pp. 17–44). Washington, D.C.: Island Press.

372 Sasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land‐use and land‐cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25, 4291–4302. https://doi.org/10.1111/gcb.14774

373 Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2016). The global methane budget 2000–2012. Earth System Science Data, 8(2), 697–751. https://doi.org/10.5194/essd‐8‐697‐2016

374 Schindler, D. W., Curtis, P. J., Parker, B. R., & Stainton, M. P. (1996). Consequences of climate warming and lake acidification for UV‐B penetration in North American boreal lakes. Nature, 379(6567), 705–708. https://doi.org/10.1038/379705a0

375 Schippers, A., & Jørgensen, B. B. (2002). Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta, 66(1), 85–92.

376 Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386

377 Segarra, K. E. A., Comerford, C., Slaughter, J., & Joye, S. B. (2013). Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochimica et Cosmochimica Acta, 115, 15–30. https://doi.org/10.1016/j.gca.2013.03.029

378 Segarra, K. E. A., Schubotz, F., Samarkin, V. A., Yoshinaga, M. Y., Hinrichs, K. U., & Joye, S. B. (2015). High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Communications, 6(May), 1–8. https://doi.org/10.1038/ncomms8477

379 Segers, R. (1998). Methane production and methane consumption: A review of processes underlying wetland methane fluxes. Biogeochemistry, 41, 23–51. https://doi.org/10.1023/A:1005929032764

380 Selvam, B. P., Lapierre, J. F., Guillemette, F., Voigt, C., Lamprecht, R. E., Biasi, C., et al. (2017). Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat. Scientific Reports, 7, 1–9. https://doi.org/10.1038/srep45811

381 Shibata, H., Petrone, K. C., Hinzman, L. D., & Boone, R. D. (2003). Effect of fire on dissolved organic carbon and inorganic solutes in spruce forest in the permafrost region of interior Alaska. Soil Science and Plant Nutrition, 49(1), 25–29. https://doi.org/10.1080/00380768.2003.10409975

382 Shields, M. R., Bianchi, T. S., Gélinas, Y., Allison, M. A., & Twilley, R. R. (2016). Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 43, 1149–1157. https://doi.org/10.1002/2015GL067388

383 Shuttleworth, E. L., Evans, M. G., Hutchinson, S. M., & Rothwell, J. J. (2015). Peatland restoration: Controls on sediment production and reductions in carbon and pollutant export. Earth Surface Processes and Landforms, 40(4), 459–472. https://doi.org/10.1002/esp.3645

384 Silliman, B. R., Van De Koppel, J., McCoy, M. W., Diller, J., Kasozi, G. N., Earl, K., et al. (2012). Degradation and resilience in Louisiana salt marshes after the BP‐Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11234–11239. https://doi.org/10.1073/pnas.1204922109

385 Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangrove drivers or buffers of coastal acidification? Global Biogeochemical Cycles, (Dic), 753–766. https://doi.org/10.1002/2015GB005324

386 Sippo, J. Z., Maher, D. T., Schulz, K. G., Sanders, C. J., McMahon, A., Tucker, J., & Santos, I. R. (2019). Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochimica et Cosmochimica Acta, 253, 142–158. https://doi.org/10.1016/j.gca.2019.03.003

387 Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J., et al. (2005). Regional scale evidence for improvements in surface water chemistry 1990‐2001. Environmental Pollution, 137(1), 165–176. https://doi.org/10.1016/j.envpol.2004.12.023

388 Smemo, K. A., & Yavitt, J. B. (2007). Evidence for anaerobic CH4 oxidation in freshwater peatlands. Geomicrobiology Journal, 24(7–8), 583–597. https://doi.org/10.1080/01490450701672083

389 Smemo, K. A., & Yavitt, J. B. (2011). Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences, 8(5), 779–793. https://doi.org/10.5194/bgd‐7‐7945‐2010

390 Smith, D. C., Konrad, V., Koulouris, H., Hawes, E., & Borns, H. W. (1989). Salt marshes as a factor in the agricuture of northeastern North America. Agricultural History, 63(2), 270–294.

391 Smith, S. M., & Green, C. W. (2013). Sediment suspension and elevation loss triggered by Atlantic mud fiddler crab (Uca pugnax) bioturbation in salt marsh dieback areas of southern New England. Journal of Coastal Research, 31(1), 88. https://doi.org/10.2112/jcoastres‐d‐12‐00260.1

392 Smith, S. M., Newman, S., Garrett, P. B., & Leeds, J. A. (2001). Differential effects of surface and peat fire on soil constituents in a degraded wetland of the northern Florida Everglades. Journal of Environmental Quality, 30, 1998–2005. https://doi.org/10.2134/jeq2001.1998

393 Smith, T. J., & Odum, W. E. (1981). The effects of grazing by snow geese on coastal salt marshes. Ecology, 62(1), 98–106. https://doi.org/10.2307/1936673

394 Smyth, A. R., Loecke, T. D., Franz, T. E., & Burgin, A. J. (2019). Using high‐frequency soil oxygen sensors to predict greenhouse gas emissions from wetlands. Soil Biology and Biochemistry, 128(July 2018), 182–192. https://doi.org/10.1016/j.soilbio.2018.10.020

395 Song, C., Liu, D., Yang, G., Song, Y., & Mao, R. (2011). Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China. Ecological Engineering, 37(10), 1578–1582. https://doi.org/10.1016/j.ecoleng.2011.03.036

396 Sørensen, J., Christensen, D., & Jørgensen, B. B. (1981). Volatile fatty acids and hydrogen as substrates for sulfate‐reducing bacteria in anaerobic marine sediment. Applied and Environmental Microbiology, 42(1), 5–11. https://doi.org/10.1128/aem.42.1.5‐11.1981

397 Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A., & Hopkinson, C. S. (2019). Global‐change controls on soil‐carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 12(9), 685–692. https://doi.org/10.1038/s41561‐019‐0435‐2

398 Stanley, K. M., Heppell, C. M., Belyea, L. R., Baird, A. J., & Field, R. H. (2019). The importance of CH4 ebullition in floodplain fens. Journal of Geophysical Research: Biogeosciences, 124(7), 1750–1763. https://doi.org/10.1029/2018JG004902

399 Stephens, J. C., Allen Jr., L. H., & Chen, E. (1984). Organic soil subsidence. In: T. L. Holzer (Ed.), Man‐Induced Land Subsidence. Reviews in Engineering Geology Vol 6 (pp. 107–122). Boulder, Colorado: Geological Society of America.

400 Sterner, R. W., & Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, New Jersey: Princeton University Press. https://doi.org/10.1515/9781400885695

401 Strack, M., Waddington, J. M., Bourbonniere, R. A., Buckton, E. L., Shaw, K., Whittington, P., & Price, J. S. (2008). Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes, 22(17), 3373–3385. https://doi.org/10.1002/hyp

402 Straub, K. L., Benz, M., & Schink, B. (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34, 181–186. https://doi.org/10.1111/j.1574‐6941.2001.tb00768.x

403 Streever, W. J. (2000). Spartina alterniflora marshes on dredged material: A critical review of the ongoing debate over success. Wetlands Ecology and Management, 8(5), 295–316. https://doi.org/10.1023/A:1008483203083

404 Sutter, L. A., Perry, J. E., & Chambers, R. M. (2014). Tidal freshwater marsh plant responses to low level salinity increases. Wetlands, 34(1), 167–175. https://doi.org/10.1007/s13157‐013‐0494‐x

405 Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science and Technology, 39(23), 9009–9015. https://doi.org/10.1021/es050778q

406 Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K., & Friess, D. A. (2020). Climate change mitigation potential of wetlands and the cost‐effectiveness of their restoration. Interface Focus, 10, 20190129.

407 Tan, L., Ge, Z., Zhou, X., Li, S., Li, X., & Tang, J. (2020). Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta‐analysis. Global Change Biology, 26(3), 1638–1653. https://doi.org/10.1111/gcb.14933

408 Thormann, M. N. (2006). Diversity and function of fungi in peatlands: A carbon cycling perspective. Canadian Journal of Soil Science, 86, 281–293. https://doi.org/10.4141/S05‐082

409 Thormann, M. N., & Bayley, S. E. (1997). Response of aboveground net primary plant production to nitrogen and phosphorus fertilization in peatlands in southern boreal Alberta, Canada. Wetlands, 17(4), 502–512. https://doi.org/10.1007/BF03161516

410 Tobias, C. R., & Neubauer, S. C. (2019). Salt marsh biogeochemistry: An overview. In G. M. E. Perillo, E. Wolanski, D. R. Cahoon, & C. S. Hopkinson (Eds.), Coastal wetlands: An integrated ecological approach (2nd ed., pp. 539–596). Cambridge, MA: Elsevier. https://doi.org/10.1016/B978‐0‐444‐63893‐9.00016‐2539

411 Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., & Hatano, R. (2007). Falling atmospheric pressure as a trigger for methane ebullition from peatland. Global Biogeochemical Cycles, 21(2), 1–8. https://doi.org/10.1029/2006GB002790

412 Tolhurst, T. J., Friend, P. L., Watts, C., Wakefield, R., Black, K. S., & Paterson, D. M. (2006). The effects of rain on the erosion threshold of intertidal cohesive sediments. Aquatic Ecology, 40(4), 533–541. https://doi.org/10.1007/s10452‐004‐8058‐z

413 Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage and turnover. Nature, 389, 170–173. https://doi.org/10.1038/38260

414 Treat, C. C., Wollheim, W. M., Varner, R. K., Grandy, A. S., Talbot, J., & Frolking, S. (2014). Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Global Change Biology, 20(8), 2674–2686. https://doi.org/10.1111/gcb.12572

415 Tully, K. L., Gedan, K., Epanchin‐Niell, R., Strong, A., Bernhardt, E. S., Bendor, T., et al. (2019). The invisible flood: The chemistry, ecology, and social implications of coastal saltwater intrusion. BioScience, 69(5), 368–378. https://doi.org/10.1093/biosci/biz027

416 Turetsky, M. R., Donahue, W. F., & Benscoter, B. W. (2011). Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Communications, 2(1). https://doi.org/10.1038/ncomms1523

417 Turetsky, M. R., Kane, E. S., Harden, J. W., Ottmar, R. D., Manies, K. L., Hoy, E., & Kasischke, E. S. (2011). Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 4(1), 27–31. https://doi.org/10.1038/ngeo1027

418 Turetsky, M. R., Benscoter, B., Page, S. E., Rein, G., Van Der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11–14. https://doi.org/10.1038/ngeo2325

419 Tzortziou, M., Neale, P. J., Osburn, C. L., Megonigal, J. P., Maie, N., & Jaffé, R. (2008). Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in Chesapeake Bay. Limnology and Oceanography, 53(1), 148–159. https://doi.org/10.4319/lo.2008.53.1.0148

420 Tzortziou, M., Neale, P. J., Megonigal, J. P., Lee Pow, C., & Butterworth, M. (2011). Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Marine Ecology Progress Series, 426, 41–56. https://doi.org/10.3354/meps09017

421 Urbanová, Z., Picek, T., & Bárta, J. (2011). Effect of peat re‐wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecological Engineering, 37(7), 1017–1026. https://doi.org/10.1016/j.ecoleng.2010.07.012

422 Valenzuela, E. I., Prieto‐Davó, A., López‐Lozano, N. E., Hernández‐Eligio, A., Vega‐Alvarado, L., Juárez, K., et al. (2017). Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Applied and Environmental Microbiology, 83(11), 1–15. https://doi.org/10.1128/AEM.00645‐17

423 Verhoeven, J. T. A., Arheimer, B., Yin, C., & Hefting, M. M. (2006). Regional and global concerns over wetlands and water quality. Trends in Ecology and Evolution, 21(2), 96–103. https://doi.org/10.1016/j.tree.2005.11.015

424 Verma, B., Robarts, R. D., & Headley, J. V. (2003). Seasonal changes in fungal production and biomass on standing dead Scirpus lacustris litter in a northern prairie wetland. Applied and Environmental Microbiology, 69(2), 1043–1050. https://doi.org/10.1128/AEM.69.2.1043‐1050.2003

425 Vile, M. A., Bridgham, S. D., & Wieder, R. K. (2003). Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecological Applications, 13(3), 720–734. https://doi.org/10.1890/1051‐0761(2003)013[0720:ROACMR]2.0.CO;2

426 Villa, J. A., Ju, Y., Stephen, T., Rey‐Sanchez, C., Wrighton, K. C., & Bohrer, G. (2020). Plant‐mediated methane transport in emergent and floating‐leaved species of a temperate freshwater mineral‐soil wetland. Limnology and Oceanography, 65(7), 1635–1650. https://doi.org/10.1002/lno.11467

427 Visser, J. M., Franken, F., & Sasser, C. E. (1999). Effects of grazing on the recovery of oligohaline marshes impacted by Hurricane Andrew. In: L. P. Rozas, J. A. Nyman, C. E. Proffitt, N. N. Rabalais, D. J. Reed, & R. E. Turner (Eds.), Recent Research in Coastal Louisiana: Natural System Function and Response to Human Influence (pp. 295–304). Louisiana Sea Grant College.

428 Waddington, J. M., Strack, M., & Greenwood, M. J. (2010). Toward restoring the net carbon sink function of degraded peatlands: Short‐term response in CO2 exchange to ecosystem‐scale restoration. Journal of Geophysical Research, 115(G1), 1–13. https://doi.org/10.1029/2009jg001090

429 Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., & Chapin III, F. S. (2006). Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 443(7107), 71–75. https://doi.org/10.1038/nature05040

430 Wand, S. J. E., Midgley, G. F., Jones, M. H., & Curtis, P. S. (1999). Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta‐analytic test of current theories and perceptions. Global Change Biology, 5, 723–741. https://doi.org/10.1046/j.1365‐2486.1999.00265.x

431 Wang, H., Richardson, C. J., & Ho, M. (2015). Dual controls on carbon loss during drought in peatlands. Nature Climate Change, 5(6), 584–587. https://doi.org/10.1038/nclimate2643

432 Wang, T., & Peverly, J. H. (1999). Iron oxidation states on root surfaces of a wetland plant (Phragmites australis). Soil Science Society of America Journal, 63(1), 247–252. https://doi.org/10.2136/sssaj1999.03615995006300010036x

433 Wang, Y., Wang, H., He, J. S., & Feng, X. (2017). Iron‐mediated soil carbon response to water‐table decline in an alpine wetland. Nature Communications, 8(May), 1–9. https://doi.org/10.1038/ncomms15972

434 Wang, Z. A., & Cai, W.‐J. (2004). Carbon dioxide degassing and inorganic carbon export from a marsh‐dominated estuary (the Duplin River): A marsh CO2 pump. Limnology and Oceanography, 49(2), 341–354. https://doi.org/10.4319/lo.2004.49.2.0341

435 Wantzen, K. M., De Arruda Machado, F., Voss, M., Boriss, H., & Junk, W. J. (2002). Seasonal isotopic shifts in fish of the Pantanal wetland, Brazil. Aquatic Sciences, 64(3), 239–251. https://doi.org/10.1007/PL00013196

436 Watson, A., & Nedwell, D. B. (1998). Methane production and emission from peat: The influence of anions (sulphate, nitrate) from acid rain. Atmospheric Environment, 32, 3239–3245. https://doi.org/10.1016/S1352‐2310(97)00501‐3

437 Webster, J. R., & Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics, 17, 567–594. https://doi.org/10.1146/annurev.es.17.110186.003031

438 Weiss, J. V, Emerson, D., & Megonigal, J. P. (2004). Geochemical control of microbial Fe(III) reduction potential in wetlands: Comparison of the rhizosphere to non‐rhizosphere soil. FEMS Microbiology Ecology, 48, 89–100. https://doi.org/10.1016/j.femsec.2003.12.014

439 Weiss, J. V, Emerson, D., & Megonigal, J. P. (2005). Rhizosphere iron(III) deposition and reduction in a Juncus effusus L.‐dominated wetland. Soil Science Society of America Journal, 69(6), 1861–1870. https://doi.org/10.2136/sssaj2005.0002

440 Weston, N. B., & Joye, S. B. (2005). Temperature‐driven decoupling of key phases of organic matter degradation in marine sediments. Proceedings of the National Academy of Sciences, 102(47), 17036–17040. https://doi.org/10.1073/pnas.0508798102

441 Weston, N. B., Vile, M. A., Neubauer, S. C., & Velinsky, D. J. (2011). Accelerated microbial organic matter mineralization following salt‐water intrusion into tidal freshwater marsh soils. Biogeochemistry, 102(1), 135–151. https://doi.org/10.1007/s10533‐010‐9427‐4

442 Weston, N. B., Neubauer, S. C., Velinsky, D. J., & Vile, M. A. (2014). Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry, 120(1–3), 163–189. https://doi.org/10.1007/s10533‐014‐9989‐7

443 Wetzel, R. G. (1992). Gradient‐dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia, 229(1), 181–198. https://doi.org/10.1007/BF00007000

444 Whiting, G. J., & Chanton, J. P. (1992). Plant‐dependent CH4 emission in a subarctic Canadian fen. Global Biogeochemical Cycles, 6(3), 225–231. https://doi.org/10.1029/92GB00710

445 Whiting, G. J., & Chanton, J. P. (1993). Primary production control of methane emission from wetlands. Nature, 364(6440), 794–795. https://doi.org/10.1038/364794a0

446 Whiting, G. J., & Chanton, J. P. (2001). Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B, 53(5), 521–528. https://doi.org/10.1034/j.1600‐0889.2001.530501.x

447 Wilkinson, B. H., & McElroy, B. J. (2007). The impact of humans on continental erosion and sedimentation. Geological Society of America Bulletin, 119(1–2), 140–156. https://doi.org/10.1130/B25899.1

448 Williams, C. J., Shingara, E. A., & Yavitt, J. B. (2000). Phenol oxidase activity in peatlands in New York state: Response to summer drought and peat type. Wetlands, 20(2), 416–421. https://doi.org/10.1672/0277‐5212(2000)020[0416:POAIPI]2.0.CO;2

449 Williamson, C. E., Morris, D. P., Pace, M. L., & Olson, O. G. (1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography, 44(3 II), 795–803 https://doi.org/10.4319/lo.1999.44.3_part_2.0795

450 Williamson, C. E., Overholt, E. P., Pilla, R. M., Leach, T. H., Brentrup, J. A., Knoll, L. B., et al. (2015). Ecological consequences of long‐term browning in lakes. Scientific Reports, 5(November), 1–10. https://doi.org/10.1038/srep18666

451 Wilson, D., Blain, D., Cowenberg, J., Evans, C. D., Murdiyarso, D., Page, S. E., et al. (2016). Greenhouse gas emission factors associated with rewetting of organic soils. Mires and Peat, 17(04), 1–28. https://doi.org/10.19189/MaP.2016.OMB.222

452 Winter, T. C. (1988). A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands. Environmental Management, 12(5), 605–620. https://doi.org/10.1007/BF01867539

453 Wolf, A. A., Drake, B. G., Erickson, J. E., & Megonigal, J. P. (2007). An oxygen‐mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Global Change Biology, 13(9), 2036–2044. https://doi.org/10.1111/j.1365‐2486.2007.01407.x

454 Wolf, E. C., Rejmánková, E., & Cooper, D. J. (2019). Wood chip soil amendments in restored wetlands affect plant growth by reducing compaction and increasing dissolved phenolics. Restoration Ecology, 27(5), 1128–1136. https://doi.org/10.1111/rec.12942

455 Worrall, F., Armstrong, A., & Adamson, J. K. (2007). The effects of burning and sheep‐grazing on water table depth and soil water quality in a upland peat. Journal of Hydrology, 339(1–2), 1–14. https://doi.org/10.1016/j.jhydrol.2006.12.025

456 Worrall, F., Moody, C. S., Clay, G. D., Burt, T. P., & Rose, R. (2017). The flux of organic matter through a peatland ecosystem: The role of cellulose, lignin, and their control of the ecosystem oxidation state. Journal of Geophysical Research: Biogeosciences, 122(7), 1655–1671. https://doi.org/10.1002/2016JG003697

457 Wright, A. L., & Reddy, K. R. (2001). Phosphorus loading effects on extracellular enzyme activity in Everglades wetland soils. Soil Science Society of America Journal, 65(2), 588–595. https://doi.org/10.2136/sssaj2001.652588x

458 Xiang, W., Wan, X., Yan, S., Wu, Y., & Bao, Z. (2013). Inhibitory effects of drought induced acidification on phenol oxidase activities in Sphagnum‐dominated peatland. Biogeochemistry, 116(1–3), 293–301. https://doi.org/10.1007/s10533‐013‐9859‐8

459 Xu, S., Liu, X., Li, X., & Tian, C. (2019). Soil organic carbon changes following wetland restoration: A global meta‐analysis. Geoderma. Elsevier. https://doi.org/10.1016/j.geoderma.2019.06.027

460 Yao, H., Conrad, R., Wassmann, R., & Neue, H. U. (1999). Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry, 47(3), 269–295. https://doi.org/10.1007/BF00992910

461 Ye, R., Jin, Q., Bohannan, B., Keller, J. K., McAllister, S. A., & Bridgham, S. D. (2012). pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic‐minerotrophic gradient. Soil Biology and Biochemistry, 54, 36–47. https://doi.org/10.1016/j.soilbio.2012.05.015

462 Zang, X., Van Heemst, J. D. H., Dria, K. J., & Hatcher, P. G. (2000). Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Organic Geochemistry, 31(7–8), 679–695. https://doi.org/10.1016/S0146‐6380(00)00040‐1

463 Zhao, H., Tong, D. Q., Lin, Q., Lu, X., & Wang, G. (2012). Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma, 189–190, 532–539. https://doi.org/10.1016/j.geoderma.2012.05.013

464 Zheng, H., Wang, X., Luo, X., Wang, Z., & Xing, B. (2018). Biochar‐induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Science of the Total Environment, 610–611, 951–960. https://doi.org/10.1016/j.scitotenv.2017.08.166

465 Zimmerman, A. R., Chorover, J., Goyne, K. W., & Brantley, S. L. (2004). Protection of mesopore‐adsorbed organic matter from enzymatic degradation. Environmental Science and Technology, 38(17), 4542–4548. https://doi.org/10.1021/es035340+

Wetland Carbon and Environmental Management

Подняться наверх