Читать книгу Biosorption for Wastewater Contaminants - Группа авторов - Страница 39

References

Оглавление

1 Abbas, S.H., Ismail, I.M., Mostafa, T.M., and Sulaymon, A.H. (2014). Biosorption of heavy metals: A review. Journal of Chemical Science and Technology 3 (4): 74–102.

2 Abdi, O. and Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science 6 (5): 1386–1399.

3 Acosta Rodríguez, I., Martínez‐Juárez, V.M., Cárdenas‐González, J.F. et al. (2013). Biosorption of Arsenic(III) from Aqueous Solutions by Modified Fungal Biomass of Paecilomyces sp. Bioinorganic Chemistry and Applications 2013: 1–5. doi:10.1155/2013/376780.

4 Adewuyi, A. (2020). Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water 12 (6): 1551. doi:10.3390/w12061551.

5 Ahemad, M. and Kibret, M. (2013). Recent trends in microbial biosorption of heavy metals: A review. Biochemistry and Molecular Biology 1 (1): 19–26.

6  Al‐Asheh, S., Banat, F., and Mohai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere 39: 2087–2096.

7 Ali Redha, A. (2020). Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences 27 (1): 183–193. doi:10.1080/25765299.2020.1756177.

8 Anaemene, I.A. (2012). The use of Candida sp. in the biosorption of heavy metals from industrial effluent. European Journal of Experimental Biology 2 (3): 484–488.

9 Apinthanapong, M. and Phensaijai, M. (2009). Biosorption of copper by spent yeast immobilized in sodium alginate beads. Kasetsart Journal (Natural Science) 43: 326–332.

10 Arakaki, A.H., Vandenberghe, S., de Soccol, L.P. et al. (2011). Optimization of biomass production with copper bioaccumulation by yeasts in submerged fermentation. Brazilian Archives of Biology and Technology 54 (5): 1027–1034. doi:10.1590/S1516‐89132011000500021.

11 Aravindhan, R., Fathima, A., Selvamurugan, M. et al. (2012). Adsorption, desorption, and kinetic study on Cr(III) removal from aqueous solution using Bacillus subtilis biomass. Clean Technologies and Environmental Policy 14 (4): 727–735. doi:10.1007/s10098‐011‐0440‐7.

12 Arbanah, M., Najwa, M., and Ku Halim, K. (2013). Utilization of Pleurotusostreatus in the removal of Cr (VI) from chemical laboratory waste. International Refereed Journal of Engineering Science 2: 29–39.

13 Argun, M.E., Dursun, S., and Karatas, M. (2009). Removal of Cd (II), Pb (II), Cu (II) and Ni (II) from water using modified pine bark. Desalination 249: 519–527.

14 Arshad, N. and Imran, S. (2020). Indigenous waste plant materials: An easy and cost‐effective approach for the removal of heavy metals from water. Current Research in Green and Sustainable Chemistry 3: 100040. doi:10.1016/j.crgsc.2020.100040.

15 Aryal, M. (2020). A comprehensive study on the bacterial biosorption of heavy metals: materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering 20190016. doi:10.1515/revce‐2019‐0016.

16 Aryal, M., Ziagova, M.G., and Liakopoulou‐Kyriakides, M. (2012). Cu(II). Biosorption and competitive studies in multi‐ions aqueous systems by Arthrobacter sp. Sphe3 and Bacillus sphaericus cells: equilibrium and thermodynamic studies. Water, Air, and Soil Pollution 223 (8): 5119–5130. doi:10.1007/s11270‐012‐1263‐9.

17 Babel, S. (2003). Low‐cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials 97 (1–3): 219–243. doi:10.1016/S0304‐3894(02)00263‐7.

18 Banat, F., Al‐Asheh, S., and Mohai, F. (2002). Multi‐metal sorption by spent animal bones. Separation Science and Technology 37: 311–327.

19 Baroni, L., Cenci, L., Tettamanti, M. et al. (2007). Evaluating the environmental impact of various dietary patterns combined with different food production systems. European Journal of Clinical Nutrition 61 (2): 279–286. doi:10.1038/sj.ejcn.1602522.

20 Çelekli, A., Yavuzatmaca, M., and Bozkurt, H. (2010). An eco‐friendly process: Predictive modelling of copper adsorption from aqueous solution on Spirulina platensis. Journal of Hazardous Materials 173 (1–3): 123–129. doi:10.1016/j.jhazmat.2009.08.057.

21 Chen, C. and Wang, J.‐L. (2006). [Cation (K+, Mg2+, Na+, Ca2+) release in Zn(II) biosorption by Saccharomyces cerevisiae]. Huan Jing Ke Xue= Huanjing Kexue 27 (11): 2261–2267.

22 Chojnacka, K. (2010). Biosorption and bioaccumulation – the prospects for practical applications. Environment International 36 (3): 299–307. doi:10.1016/j.envint.2009.12.001.

23  Dahiya, S., Tripathi, R.M., and Hegde, A.G. (2008). Biosorption of lead and copper from aqueous solutions by pretreated crab and arca shell biomass. Bioresource Technology 99: 179–187.

24 Das, N., Vimala, R., and Karthika,: (2008). Biosorption of heavy metals – An overview. Indian Journal of Biotechnology 7: 159–169.

25 Davis, T.A., Volesky, B., and Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research 37 (18): 4311–4330. doi:10.1016/S0043‐1354(03)00293‐8.

26 Dhanarani, S., Viswanathan, E., Piruthiviraj,: et al. (2016). Comparative study on the biosorption of aluminum by free and immobilized cells of Bacillus safensis KTSMBNL 26 isolated from explosive contaminated soil. Journal of the Taiwan Institute of Chemical Engineers 69: 61–67. doi:10.1016/j.jtice.2016.09.032.

27 Fan, T., Liu, Y., Feng, B. et al. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials 160 (2–3): 655–661. doi:10.1016/j.jhazmat.2008.03.038.

28 Farajzadeh, M.A. and Monji, A.B. (2004). Adsorption characteristics of wheat bran towards heavy metal cations. Sep Purif Technol 38: 197–207.

29 Flouty, R. and Estephane, G. (2012). Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: A comparative study. Journal of Environmental Management 111: 106–114. doi:10.1016/j.jenvman.2012.06.042.

30 Fu, F. and Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92 (3): 407–418. doi:10.1016/j.jenvman.2010.11.011.

31 Gaensly, F., Picheth, G., Brand, D. et al. (2014). The uptake of different iron salts by the yeast Saccharomyces cerevisiae. Brazilian Journal of Microbiology 45 (2): 491–494. doi:10.1590/S1517‐83822014000200016.

32 Gao, R., Wang, Y., Zhang, Y. et al. (2017). Cobalt(II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnology and Biotechnological Equipment 31 (3): 527–534. doi:10.1080/13102818.2017.1292148.

33 Gulati, R., Saxena, R.K., and Gupta, R. (2002). Fermentation waste of Aspergillus terreus: a potential copper biosorbent. World Journal of Microbiology and Biotechnology 18 (5): 397–401. doi:10.1023/A:1015540921432.

34 Gupta, R., Saxena, R., Mohapatra, H., and Ahuja, P. (2002). Microbial variables for bioremediation of heavy metals from industrial effluents. In: Progress in Industrial Microbiology (ed. V.P. Singh and R.D. Stapleton), vol. 36: 189–229. Elsevier.

35 Gupta, V.K., Rastogi, A., and Nayak, A. (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. Journal of Colloid and Interface Science 342 (2): 533–539. doi:10.1016/j.jcis.2009.10.074.

36 Haluk Ceribasi, I. and Yetis, U. (2004). Biosorption of Ni(ii) and Pb(ii) by Phanerochaete chrysosporium from a binary metal system – kinetics. Water SA 27 (1): 15–20. doi:10.4314/wsa.v27i1.5004.

37 Hlihor, R.M., Bulgariu, L., Sobariu, D.L. et al. (2014). Recent advances in biosorption of heavy metals: Support tools for biosorption equilibrium, kinetics and mechanism. Revue Roumaine de Chimie 59: 527–538.

38 Huang, W. and Liu, Z.‐M. (2013). Biosorption of Cd (II)/Pb(II) from aqueous solution by biosurfactant‐producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B 105: 113–119.

39  Ibrahim, W.M. and Mutawie, H.H. (2013). Bioremoval of heavy metals from industrial effluent by fixed‐bed column of red macroalgae. Toxicology and Industrial Health 29 (1): 38–42. doi:10.1177/0748233712445044.

40 Inoue, K., Parajuli, D., Ghimire, K. et al. (2017). Biosorbents for removing hazardous metals and metalloids. Materials 10 (8): 857. doi:10.3390/ma10080857.

41 Jaishankar, M., Tseten, T., Anbalagan, N. et al. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 7 (2): 60–72. doi:10.2478/intox‐2014‐0009.

42 Javaid, A., Bajwa, R., Shafique, U. et al. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass and Bioenergy 35 (5): 1675–1682. doi:10.1016/j.biombioe.2010.12.035.

43 Kanamarlapudi, S.L.R.K., Chintalpudi, V.K., and Muddada, S. (2018). Application of biosorption for removal of heavy metals from wastewater. In: Biosorption (ed. J. Derco and B. Vrana). InTech. doi: 10.5772/intechopen.77315.

44 Kazy, S.K., Das, S.K., and Sar, P. (2006). Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. Journal of Industrial Microbiology and Biotechnology 33 (9): 773–783. doi:10.1007/s10295‐006‐0108‐1.

45 Kizilkaya, B., Tekinay, A.A., and Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination 264: 37–47.

46 Kulkarni, S.J. (2014). Use of biotechnology for synthesis of various products from different feedstocks – a review. Int. J. Adv. Res. Bio‐Technol. 2: 1–3.

47 Lee, Y.‐C. and Chang, S.‐P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology 102 (9): 5297–5304. doi:10.1016/j.biortech.2010.12.103.

48 Leitão, A.L. (2009). Potential of Penicillium Species in the Bioremediation Field. International Journal of Environmental Research and Public Health 6 (4): 1393–1417. doi:10.3390/ijerph6041393.

49 Luo, J., Xiao, X., and Luo, S.‐L. (2010). Biosorption of cadmium(II) from aqueous solutions by industrial fungus Rhizopus cohnii. Transactions of Nonferrous Metals Society of China 20 (6): 1104–1111. doi:10.1016/S1003‐6326(09)60264‐8.

50 Lupea, M., Bulgariu, L., and Macoveanu, M. (2012). Biosorption of Cd(II) from aqueous solution on marine green algae biomass. Environmental Engineering and Management Journal 11 (3): 607–615. doi:10.30638/eemj.2012.076.

51 Macek, T. and Mackova, M. (2011). Potential of biosorption technology. In: Microbial Biosorption of Metals (ed.: Kotrba, M. Mackova, and T. Macek). Springer. doi:10.1007/978‐94‐007‐0443‐5_2.

52 Mamisahebei, S., Khaniki, G.R.J., Torabian, A. et al. (2007). Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. Journal of Environmental Health Science and Engineering 4 (2): 85–92.

53 Mapolelo, M. (2004). Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta 64 (1): 39–47. doi:10.1016/j.talanta.2003.10.058.

54 Moat, A.G., Foster, J.W., and Spector, M.P. (2002). Microbial Physiology. New York: Wiley‐Liss.

55 Mohan, D. and Singh, K.P. (2002). Single‐ and multi‐component adsorption of cadmium and zinc using activated carbon derived from bagasse‐an agricultural waste. Water Res 36: 2304–2318.

56  Mohan, D., Singh, K.P., and Singh, V.K. (2006). Chromium (III) removal from wastewater using low cost activated carbon derived from agriculture waste material and activated carbon fabric filter. J Hazard Mater 135: 280–295.

57 Monsieurs P., Hobman J., Vandenbussche G. et al. (2015). Response of Cupriavidus metallidurans CH34 to Metals. In: Metal Response in Cupriavidus metallidurans (ed. M. Mergeay and R. Van Houdt), 45–89. Springer Briefs in Molecular Science. Springer. doi:10.1007/978‐3‐319‐20594‐6_3.

58 Montanher, S.F., Oliveira, E.A., and Rollemberg, M.C. (2005). Removal of metal ions from aqueous solutions by sorption onto rice bran. J Hazard Mater 117: 207–211.

59 Mrvčić, J., Stanzer, D., Šolić, E. et al. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology 28 (9): 2771–2782. doi:10.1007/s11274‐012‐1094‐2.

60 Mulligan, C., Yong, R., and Gibbs, B. (2001). Remediation alternative treatment option for heavy metal bearing wastewaters: A review. Bioresource Technology 53: 195–206.

61 Muraleedharan, T.R., Iyengar, L., and Venkobachar, C. (1991). Biosorption: An attractive alternative for metal removal and recovery. Current Science 61 (6): 379–385.

62 Murphy, V., Hughes, H., and McLoughlin, P. (2008). Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70 (6): 1128–1134. doi:10.1016/j.chemosphere.2007.08.015.

63 Mustapha, M.U. and Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: a review paper. Journal of Microbial and Biochemical Technology 07 (05). doi:10.4172/1948‐5948.1000219.

64 Nagashetti, V., Mahadevaraju, G.K., Muralidhar, T.S. et al. (2013). Biosorption of heavy metals from soil by Pseudomonas aeruginosa. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 2 (6): 9–17.

65 Oves, M., Khan, M.S., and Zaidi, A. (2013). Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences 20 (2): 121–129. doi:10.1016/j.sjbs.2012.11.006.

66 Oyedepo, T.A. (2011). Biosorption of lead (II) and copper (II) metal ions on Calotropisprocera (Ait.). Science Journal of Pure and Applied Chemistry 1: 1–7.

67 Park, D., Yun, Y.‐S., and Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering 15 (1): 86–102. doi:10.1007/s12257‐009‐0199‐4.

68 Park, J.K., Lee, J.W., and Jung, J.Y. (2003). Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells. Enzyme and Microbial Technology 33 (4): 371–378. doi:10.1016/S0141‐0229(03)00133‐9.

69 Pehlivan, E., Altun, T., and Parlayici, S. (2012). Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem 135: 2229–2234.

70 Prasad, K.S., Srivastava, P., Subramanian, V., and Paul, J. (2011). Biosorption of As(III) ion on Rhodococcus sp. WB‐12: biomass characterization and kinetic studies. Separ Sci Technol 46: 2517–2525.

71 Quiton, K.G., Doma, B., Futalan, C.M. et al. (2018). Removal of chromium(VI) and zinc(II) from aqueous solution using kaolin‐supported bacterial biofilms of Gram‐negative E. coli and Gram‐positive Staphylococcus epidermidis. Sustainable Environment Research 28 (5): 206–213. doi:10.1016/j.serj.2018.04.002.

72  Rajapaksha, A.U., Vithanage, M., Ahmad, M. et al. (2015). Enhanced sulfamethazine removal by steam‐activated invasive plant‐derived biochar. Journal of Hazardous Materials 290: 43–50. doi:10.1016/j.jhazmat.2015.02.046.

73 Rana, R.S., Singh, P., Kandari, V. et al. (2017). A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Applied Water Science 7 (1): 1–12. doi:10.1007/s13201‐014‐0225‐3.

74 Rani, M.J., Hemambika, B., Hemapriya, J., and Kannan, V.R. (2010). Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: A biosorption approach. African Journal of Environmental Science and Technology 4 (2): 077–083.

75 Remacle, J. (1990). The cell wall and metal binding. In: Biosorption of Heavy Metals (ed. B. Volesky), 83–92. Boca Raton, Florida: CRC Press.

76 Rezaei, H. (2016). Biosorption of chromium by using Spirulina sp. Arabian Journal of Chemistry 9 (6): 846–853. doi:10.1016/j.arabjc.2013.11.008.

77 Romera, E., González, F., Ballester, A. et al. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology 98 (17): 3344–3353. doi:10.1016/j.biortech.2006.09.026.

78 Saeed, A., Iqbal, M., and Akhtar, M.W. (2005). Removal and recovery of lead (II) from single and multiple (Cd, Ni, Cu, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117: 65–73.

79 Saranya, K., Sundaramanickam, A., Shekhar, S. et al. (2018). Biosorption of multi‐heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. Journal of Environmental Management 222: 396–401. doi:10.1016/j.jenvman.2018.05.083.

80 Sarı, A., Uluozlü, Ö.D., and Tüzen, M. (2011). Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chemical Engineering Journal 167 (1): 155–161. doi:10.1016/j.cej.2010.12.014.

81 Sayyadi, S., Ahmady‐Asbchin, S., Kamali, K. et al. (2017). Thermodynamic, equilibrium and kinetic studies on biosorption of Pb +2 from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. Journal of the Taiwan Institute of Chemical Engineers 80: 701–708. doi:10.1016/j.jtice.2017.09.005.

82 Shamim, S. (2018). Biosorption of heavy metals. In: Biosorption (ed. J. Derco and B. Vrana), 21–49. InTech.

83 Shamim, S. and Rehman, A. (2014). Physicochemical surface properties of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress: Physicochemical surface properties under Cd stress. Journal of Basic Microbiology 54 (4): 306–314. doi:10.1002/jobm.201200434.

84 Shamim, S., Rehman, A., and Qazi, M.H. (2014). Cadmium‐Resistance Mechanism in the Bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Archives of Environmental Contamination and Toxicology 67 (2): 149–157. doi:10.1007/s00244‐014‐0009‐7.

85 Siñeriz, M.L., Kothe, E., and Abate, C.M. (2009). Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. Journal of Basic Microbiology 49 (S1): S55–S62. doi:10.1002/jobm.200700376.

86 Srivastava, S., Agrawal, S.B., and Mondal, M.K. (2016). Animal wastes: an alternative adsorbent for removal of toxic heavy metals from industrial wastewater. Journal of Scientific Research 60: 65–72.

87  Subbaiah, M.V. and Yun, Y.S. (2013). Biosorption of Nickel(II) from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass: equilibrium, kinetics, and thermodynamic studies. Biotechnology and Bioprocess Engineering 18 (2): 280–288. doi:10.1007/s12257‐012‐0401‐y.

88 Subhashini, S., Kaliappan, S., and Velan, M. (2011). Removal of heavy metal from aqueous solution using Schizosaccharomycespombe in free and alginate immobilized cells. In: 2nd International Conference on Environmental Science and Technology IPCBEE, vol. 6: V2107–V2111. IACSIT Press.

89 Trinelli, M.A., Areco, M.M., and dos Santos Afonso, M. (2013). Co‐biosorption of copper and glyphosate by Ulva lactuca. Colloids and Surfaces B: Biointerfaces 105: 251–258. doi:10.1016/j.colsurfb.2012.12.047.

90 Veglio, F. and Beolchini, F. (1997). Removal of metals by biosorption: A review. Hydrometallurgy 44: 301–316.

91 Vieira, R.H. and Volesky, B. (2000). Biosorption: A solution to pollution? International Microbiology 3: 17–24.

92 Vijayaraghavan, K., Palanivelu, K., and Velan, M. (2006). Biosorption of copper (II) and cobalt (II) from aqueous solutions by crab shell particles. Bioresource Technology 97: 1411–1419.

93 Viraraghavan, T. and Srinivasan, A. (2011). Fungal biosorption and biosorbents. In: Microbial Biosorption of Metals (ed. Kotrba, M. Mackova, and T. Macek), 143–158. Dordrecht: Springer Netherlands. doi:10.1007/978‐94‐007‐0443‐5_6.

94 Wan Ngah, W.S. and Hanafiah M.A.K.M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technol 99: 3935–3948.

95 Wang, J. and Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances 24 (5): 427–451. doi:10.1016/j.biotechadv.2006.03.001.

96 Wilson, K., Yang, H., Seo, C.W., and Marshall, W.E. (2006). Select metal adsorption by activated carbon made from peanut shells. Biores Technol 97: 2266–2270.

97 Zhang, L., Xia, W., Teng, B. et al. (2013). Zirconium cross‐linked chitosan composite: Preparation, characterization and application in adsorption of Cr (VI). Chem. Eng. J. 229: 1–8.

Biosorption for Wastewater Contaminants

Подняться наверх