Читать книгу Change Detection and Image Time Series Analysis 2 - Группа авторов - Страница 26
1.6. References
ОглавлениеALEjaily, A., El Rube, I., Mangoud, M. (2008). Fusion of remote sensing images using contourlet transform. Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering, pp. 213–218.
Basseville, M., Benveniste, A., Willsky, A. (1992a). Multiscale autoregressive processes I. Schur–Levinson parametrizations. IEEE Transactions on Signal Processing, 40(8), 1915–1934.
Basseville, M., Benveniste, A., Willsky, A. (1992b). Multiscale autoregressive processes II. Lattice structures for whitening and modeling. IEEE Transactions on Signal Processing, 40(8), 1935–1954.
Benedetti, P., Ienco, D., Gaetano, R., Ose, K., Pensa, R.G., Dupuy, S. (2018). M3fusion: A deep learning architecture for multiscale multimodal multitemporal satellite data fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4939–4949.
Benz, U. (1999). Supervised fuzzy analysis of single and multichannel SAR data. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 1023–1037.
Berthod, M., Kato, Z., Yu, S., Zerubia, J. (1996). Bayesian image classification using Markov random fields. Image and Vision Computing, 14(4), 285–295.
Bouman, C. (1991). A multiscale image model for Bayesian image segmentation. Thesis, Purdue University, School of Electrical Engineering.
Brunner, D., Lemoine, G., Bruzzone, L. (2010). Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 48(5), 2403–2420.
Bruzzone, L., Prieto, D.F., Serpico, S. (1999). A neural-statistical approach to multitemporal and multisource remote-sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1350–1359.
Burt, P. (1984). The Pyramid as a Structure for Efficient Computation. Springer, Berlin, Heidelberg.
Carvalho, M., Le Saux, B., Trouvé-Peloux, P., Champagnat, F., Almansa, A. (2019). Multitask learning of height and semantics from aerial images. IEEE Geoscience and Remote Sensing Letters, pp. 1391–1395.
Celeux, G., Chauveau, D., Diebolt, J. (1996). Stochastic versions of the EM algorithm: An experimental study in the mixture case. Journal of Statistical Computation and Simulation, 55(4), 287–314.
Chardin, A. (2000). Modèles énergétiques hiérarchiques pour la résolution des problèmes inverses en analyse d’images: application à la télédetection. PhD Thesis, University of Rennes 1, France.
Chen, Y., Li, C., Ghamisi, P., Jia, X., Gu, Y. (2017). Deep fusion of remote sensing data for accurate classification. IEEE Geoscience and Remote Sensing Letters, 14(8), 1253–1257.
Cheng, X., Zheng, Y., Zhang, J., Yang, Z. (2020). Multi-task multi-source deep correlation filter for remote sensing data fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3723–3734.
Chibani, Y. and Houacine, A. (2003). Redundant versus orthogonal wavelet decomposition for multisensor image fusion. Pattern Recognition, 36(4), 879–887.
Choi, M., Kim, R., Nam, M.-R., Kim, H. (2005). Fusion of multispectral and panchromatic satellite images using the curvelet transform. IEEE Geoscience and Remote Sensing Letters, 2(2), 136–140.
Demirel, H. and Anbarjafari, G. (2010). Satellite image resolution enhancement using complex wavelet transform. IEEE Geoscience and Remote Sensing Letters, 7(1), 123–126.
Dousset, B. and Gourmelon, F. (2003). Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS Journal of Photogrammetry and Remote Sensing, 58(1), 43–54.
Forster, B., Van De Ville, D., Berent, J., Sage, D., Unser, M. (2004). Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and Technique, 65(1–2), 33–42.
Fukunaga, K. (2013). Introduction to Statistical Pattern Recognition. Academic Press, Cambridge, MA.
Gamba, P., Lisini, G., Tomás, L., Almeida, C., Fonseca, L. (2011). Joint VHR-LIDAR classification framework in urban areas using a priori knowledge and post processing shape optimization. IEEE Urban Remote Sensing Event (JURSE), pp. 93–96.
Ghamisi, P., Höfle, B., Zhu, X.X. (2016). Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6), 3011–3024.
Gómez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G. (2015). Multimodal classification of remote sensing images: A review and future directions. Proceedings of the IEEE, 103(9), 1560–1584.
Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press, Cambridge, MA.
Graffigne, C., Heitz, F., Perez, P., Preteux, F., Sigelle, M., Zerubia, J. (1995). Hierarchical Markov random field models applied to image analysis: A review. International Symposium on Optical Science, Engineering, and Instrumentation (SPIE), International Society for Optics and Photonics, pp. 2–17.
Hall, D. and Llinas, J. (2001). Multisensor Data Fusion. CRC Press, Boca Raton, FL.
Hedhli, I., Moser, G., Zerubia, J., Serpico, S. (2014). New cascade model for hierarchical joint classification of multitemporal, multiresolution and multisensor remote sensing data. IEEE International Conference on Image Processing (ICIP).
Hedhli, I., Moser, G., Serpico, S., Zerubia, J. (2015). New hierarchical joint classification method of SAR-optical multiresolution remote sensing data. IEEE European Signal Processing Conference.
Hedhli, I., Moser, G., Zerubia, J., Serpico, S.B. (2016). A new cascade model for the hierarchical joint classification of multitemporal and multiresolution remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 54(11), 6333–6348.
Huang, B. and Song, H. (2012). Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3707–3716.
Iqbal, M., Ghafoor, A., Siddiqui, A. (2013). Satellite image resolution enhancement using dual-tree complex wavelet transform and nonlocal means. IEEE Geoscience and Remote Sensing Letters, 10(3), 451–455.
Kato, Z. and Zerubia, J. (2012). Markov Random Fields in Image Segmentation. Now Publishers Inc, Hanover, MA.
Krylov, V., Moser, G., Serpico, S., Zerubia, J. (2013). On the method of logarithmic cumulants for parametric probability density function estimation. IEEE Transactions on Image Processing, 22(10), 3791–3806.
Laferté, J.-M., Pérez, P., Heitz, F. (2000). Discrete Markov image modeling and inference on the quadtree. IEEE Transactions on Image Processing, 9(3), 390–404.
Landgrebe, D. (2003). Signal Theory Methods in Multispectral Remote Sensing, vol. 29. John Wiley & Sons, Hoboken, NJ.
Li, S. (2009). Markov Random Field Modeling in Image Analysis. Springer Science & Business Media, Berlin, Heidelberg.
Li, H., Manjunath, B., Mitra, S. (1995). Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 57(3), 235–245.
Li, H.-C., Hong, W., Wu, Y.-R., Fan, P.-Z. (2011). On the empirical-statistical modeling of SAR images with generalized Gamma distribution. IEEE Journal of Selected Topics in Signal Processing, 5(3), 386–397.
Mallat, S. (2008). A Wavelet Tour of Signal Processing, 3rd edition. Academic Press, Cambridge, MA.
Mas, J. and Flores, J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617–663.
Minh, D.H.T., Ienco, D., Gaetano, R., Lalande, N., Ndikumana, E., Osman, F., Maurel, P. (2018). Deep recurrent neural networks for winter vegetation quality mapping via multitemporal SAR sentinel-1. IEEE Geoscience and Remote Sensing Letters, 15(3), 464–468.
Moser, G. and Serpico, S. (2009). Unsupervised change detection from multichannel SAR data by Markovian data fusion. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2114–2128.
Muñoz-Marí, J., Bovolo, F., Gómez-Chova, L., Bruzzone, L., Camp-Valls, G. (2010). Semisupervised one-class support vector machines for classification of remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 48(8), 3188–3197.
Nelson, J.D.B., Gibberd, A.J., Nafornita, C., Kingsbury, N. (2018). The locally stationary dual-tree complex wavelet model. Statistics and Computing, 28(6), 1139–1154.
Nencini, F., Garzelli, A., Baronti, S., Alparone, L. (2007). Remote sensing image fusion using the curvelet transform. Information Fusion, 8(2), 143–156.
Nguyen, N., Nasrabadi, N., Tran, T. (2011). Robust multi-sensor classification via joint sparse representation. International Conference on Information Fusion.
Pan, S., Wu, J., Zhu, X., Zhang, C., Philip, S.Y. (2015). Joint structure feature exploration and regularization for multi-task graph classification. IEEE Transactions on Knowledge and Data Engineering, 28(3), 715–728.
Pérez, P. (1993). Champs markoviens et analyse multirésolution de l’image : application à l’analyse du mouvement. PhD Thesis, University of Rennes 1, France.
Piella, G. (2003). Adaptive wavelets and their applications to image fusion and compression. Thesis, PhD Thesis, University of Amsterdam.
Pohl, C. and van Genderen, J. (1998). Review article – Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing, 19(5), 823–854.
Pohl, C. and van Genderen, J. (2014). Remote sensing image fusion: An update in the context of digital earth. International Journal of Digital Earth, 7(2), 158–172.
Prendes, J. (2015). New statistical modeling of multi-sensor images with application to change detection. Thesis, PhD Thesis, Université Paris-Sud, France.
Roberts, J., van Aardt, J., Ahmed, F. (2008). Assessment of image fusion procedures using entropy, image quality, and multispectral classification. Journal of Applied Remote Sensing, 2(1), 023522 [Online]. Available at: https://doi.org/10.1117/1.2945910.
Rockinger, O. (1996). Pixel-level fusion of image sequences using wavelet frames. Proceedings of the 16th Leeds Applied Shape Research Workshop, Leeds University Press, Citeseer.
Serpico, S., Dellepiane, S., Boni, G., Moser, G., Angiati, E., Rudari, R. (2012). Information extraction from remote sensing images for flood monitoring and damage evaluation. Proceedings of the IEEE, 100(10), 2946–2970.
Shah, V., Younan, N., King, R. (2008). An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1323–1335.
Storvik, B., Storvik, G., Fjortoft, R. (2009). On the combination of multisensor data using meta-Gaussian distributions. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2372–2379.
Stroppiana, D., Azar, R., Calo, F., Pepe, A., Imperatore, P., Boschetti, M., Silva, J., Brivio, P., Lanari, R. (2015). Remote sensing of burned area: A fuzzy-based framework for joint processing of optical and microwave data. IEEE Geoscience and Remote Sensing Symposium (IGARSS), pp. 1409–1412.
Ulaby, F. and Long, D.G. (2015). Microwave Radar and Radiometric Remote Sensing. Artech House, Boston, MA.
Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G., Restaino, R., Wald, L. (2015). A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2565–2586.
Voisin, A. (2012). Classification supervisée d’images d’observation de la Terre à haute résolution par utilisation de méthodes markoviennes. Thesis, PhD Thesis, University of Nice Sophia Antipolis, France.
Voisin, A., Krylov, V., Moser, G., Serpico, S., Zerubia, J. (2012). Multichannel hierarchical image classification using multivariate copulas. IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, Bellingham, WN.
Voisin, A., Krylov, V., Moser, G., Serpico, S., Zerubia, J. (2014). Supervised classification of multi-sensor and multi-resolution remote sensing images with a hierarchical copula-based approach. IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3346–3358.
Wald, L. (1999). Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1190–1193.
Waltz, E. and Llinas, J. (1990). Multisensor Data Fusion, vol. 685. Artech House, Boston, MA.
Wang, D. and Liang, S. (2014). Improving LAI mapping by integrating MODIS and CYCLOPES LAI products using optimal interpolation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2), 445–457.
Waske, B. and van der Linden, S. (2008). Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1457–1466.
Willsky, A. (2002). Multiresolution Markov models for signal and image processing. Proceedings of the IEEE, 90(8), 1396–1458.
Yang, B., Li, S., Sun, F. (2007). Image fusion using nonsubsampled contourlet transform. IEEE International Conference on Image and Graphics, pp. 719–724.
Zhang, Y. and Hong, G. (2005). An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images. Information Fusion, 6(3), 225–234.
Zhang, G. and Kingsbury, N. (2015). Variational Bayesian image restoration with group-sparse modeling of wavelet coefficients. Digital Signal Processing: A Review Journal, 47, 157–168.