Читать книгу Dry Beans and Pulses Production, Processing, and Nutrition - Группа авторов - Страница 70
REFERENCES
Оглавление1 Adams, W. (1978). Dry Bean Production − Principles and Practices (pp. 151). Extension Bulletin E‐1251. East Lansing, MI: Michigan State University.
2 Aguilera, J.M., Lusas, E.W., Uebersax, M.A. & Zabik, M.E. (1982). Development of food ingredients from navy beans (Phaseolus vulgaris) by roasting, pin milling, and air classification. Journal of Food Science 47: 1151–1154.
3 Angioi, S. A., Rau, D., Attene, G., Nanni, L., Bellucci, E., Logozzo, G., Negri, V., Zeuli, P.S. & Papa, R. (2010). Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theoretical and Applied Genetics 121: 829–843.
4 Anon. (2020). History of Beans − Different Types of Beans. Available at http://www.vegetablefacts.net/vegetable‐history/history‐of‐beans/ (accessed December 2, 2020).
5 Asfaw, A., Blair, M. W., & Almekinders, C. (2009). Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theoretical and Applied Genetics 120: 1–12.
6 Aw, T.L., & Swanson, B.G. (1985). Influence of tannin on Phaseolus vulgaris protein digestibility and quality. Journal of Food Science 50: 67–71.
7 Azani, N., Babineau, M., Bailey, C.D., Banks, H., Barbosa, A.R., Pinto, R.B., Boatwright, J.S., Borges, L.M., Brown, G.K., Bruneau, A. & Candido, E. (2017). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon 66: 44–77.
8 Bassett, A., Hooper, S. & Cichy, K. (2020). Genetic variability of cooking time in dry beans (Phaseolus vulgaris L.) related to seed coat thickness and the cotyledon cell wall. Food Research International 137: p.109886.
9 Bassett, M.J. (2007). Genetics of seed coat color and pattern in common bean. Plant Breeding Reviews (ed. Janick, J.), pp 239–315. Hoboken, NJ: John Wiley & Sons.
10 Beninger, C.W., Hosfield, G.L., & Nair, M.G. (1998). Flavonol glycosides from the seedcoat of a new Manteca type dry bean (Phaseolus Vulgaris L.). Journal of Agricultural & Food Chemistry 46: 2906–2910.
11 Bonfim, K., Faria, J.C., Nogueira, E.O.P.L., Mendes, E.A. & Aragao, F.J.L. (2007). RNAi‐mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant‐Microbe Interactions 20: 717–726.
12 Bukovac, M.J., Rasmussen, H.P. & Shull, V.E. (1981). The cuticle: surface structure and function. In: Scanning Electron Microscopy –III (ed. O. Johari), pp. 213–223. Chicago, IL: SEM, Inc., AMF O’Hare.
13 Bushey, S.M., & Hosfield, G.L. (2007). A test to predict color loss in black bean during thermal processing. Annual Report of the Bean Improvement Cooperative 50: 41–42.
14 Bushey, S.M., Hosfield, G.L., & Beninger, C.W. (2000). Water Uptake and its relationship to pigment leaching in black beans (Phaseolus vulgaris L.). Annual Report of the Bean Improvement Cooperative 43: 104–105.
15 Calles, T. (2016). The international year of pulses: what are they and why they important? Agriculture for Development 26: 40–42.
16 Centeno‐González, N.K., Martínez‐Cabrera, H.I., Porras‐Múzquiz, H. & Estrada‐Ruiz, E. (2021). Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation. Communications Biology 4: 1–8.
17 Elias, L.G., de Fernandez, D.G., & Bressani, R. (1979). Possible effects of seed coat polyphenolics on the nutritional quality of bean protein. Journal of Food Science 44: 524–527.
18 Erfatpour, M., Duizer, L. & Pauls, K.P. (2021). Investigations of the effects of the non‐darkening seed coat trait coded by the recessive jj alleles on agronomic, sensory, and cooking characteristics in pinto beans. Crop Science 61: 1843– 1863.
19 Feenstra, W.J. (1960). Biochemical aspects of seedcoat color inheritance in Phaseolus vulgaris L. PhD Dissertation, Wageningen University, Wageningen, Netherlands.
20 Fletcher, D., Vandenburg, B., & Bett, K. (2003). Timing of seed coat color development in black beans. Annual Report of the Bean Improvement Cooperative 46: 31–32.
21 Frankel, E.N., German, J.B., Kinsella, J.E., Parks, E. & Kanner J. (1993). Inhibition of oxidation of human low‐density lipoprotein by phenolic substances in red wine. Lancet 341: 454–57.
22 Freytag, G.F. & Debouck, D.G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae‐Papilionoideae) in North America, Mexico and Central America. Botanical Research Institute of Texas, Fort Worth. 300p.
23 Georges, A.N. (1982). Genetic, physico‐chemical and structural parameters affecting texture of dry edible beans. PhD Dissertation. Michigan State University, East Lansing, Michigan. 197p.
24 Gepts, P. (2001). Phaseolus vulgaris (Beans). In: Encyclopedia of Genetics (eds. S. Brenner & J.H. Miller), pp. 1444–1445. Cambridge, MA, USA, Academic Press.
25 Giusti, F., Capuano, E., Sagratini, G. & Pellegrini, N. (2019). A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion. Food Chemistry 285: 458–467.
26 Gooneratne, J., Needs, P.W., Ryden, P. & Selvendran, R.R. (1994). Structural features of cell wall polysaccharides from the cotyledons of mung bean Vigna Radiata. Carbohydrate Research 265: 61–77.
27 Grigolo, S. & Fioreze, A.D.C. (2018). Potential of hybridization among cultivars of common beans of different gene groups. Colloquium Agrariae 14: 67–78.
28 Guilhen, J.H.S., Marçal, T.D.S., Zanotti, R.F., Lopes, J.C. & Ferreira, A. (2016). Physiological characteristics in seeds of the common bean under multicollinearity and conditions of salinity. Revista Ciência Agronômica 47: 127–134.
29 Hagerman, A.E., Riedl, K.M., Jones, G.A., Sovik, K.N., Ritchard, N.T., Hartzfeld, P.W. & Riechel, T.L. (1998). High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural & Food Chemistry 46: 1887–1892.
30 Hardenburg, E.V. (1927). Bean Culture. New York, NY: The Macmillan Company. 238p.
31 Hart, J.J., Tako, E., Wiesinger, J. & Glahn, R.P. (2019). Polyphenolic profiles of yellow bean seed coats and their relationship with iron bioavailability. Journal of Agricultural and Food Chemistry 68: 769–778.
32 Hertog, M.G.L., Feskens, E.J.M., Hollman, P.C.H., Katan, M.B. & Kromhout, D. (1993). Dietary antioxidant flavonoids and the risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007–1011.
33 Heshmat, K., Asgari Lajayer, B., Shakiba, M.R. & Astatkie, T. (2021). Assessment of physiological traits of common bean cultivars in response to water stress and molybdenum levels. Journal of Plant Nutrition 44: 366–372.
34 Hosfield, G.L. (2001). Seed Coat Color in Phaseolus vulgaris L., Its Chemistry and Associated Health Related Benefits. Annual Report of the Bean Improvement Cooperative 44: 1–6.
35 Hosfield, G.L., Varner, G.V., Uebersax, M.A. & Kelly, J.D. (2004). Registration of ‘Merlot’ small red bean. Crop Science 44: 351–352.
36 Hsu, K.H. (1983). A diffusion model with a concentration‐dependent diffusion coefficient for describing water movement in legumes during soaking. Journal of Food Science 48: 618–622.
37 Idaho Bean Certification. (2018). Land, Isolation, Field, and Seed Standards for bean seed certification in Idaho as per IDAPA 08.05.01—Rules Governing Seed and Plant Certification, 5.21.2015.
38 Jin, D.P., Choi, I.S. & Choi, B.H. (2019). Plastid genome evolution in tribe Desmodieae (Fabaceae: Papilionoideae). PloS One 14: p.e0218743.
39 Kandel, H. & Endre, G. (editors). (2019). Dry Bean Production Guide (A1133–20). Available at https://www.ag.ndsu.edu/publications/crops/dry‐bean‐production‐guide/a1133‐20.pdf (accessed July 4, 2020).
40 Kaplan, L. (1965). Archeology and domestication in American Phaseolus (beans). Economic Botany 19: 358–368.
41 Kelly, J.D. (2010). The Story of Bean Breeding. Available at https://www.canr.msu.edu/beanbreeding/_pdf/Story_of_Bean_Breeding_in_the_US.pdf (accessed March 23, 2021).
42 Kelly, J.D. (2020). Personal communication
43 Kelly, J.D., Hosfield, G.L., Varner, G.V., Uebersax, M.A., & Taylor, J. (1999). Registration of 'Beluga' Alubia bean. Crop Science 39: 294.
44 Kelly, J.D., Varner, G.V., Hosfield, G.L., Uebersax, M.A. & Taylor, J. (2006). Registration of ‘Capri’ cranberry bean. Crop Science 46: 2706.
45 Kelly, J.D., Varner, G.V., O'Boyle, P. & Long B. (2009). Registration of ‘Zorro’ black bean. Journal of Plant Registrations 3: 226–230.
46 Kigel, J., Rosental, L. & Fait, A. (2015). Seed physiology and germination of grain legumes. In: Grain Legumes (ed. A.M. De Ron ), pp. 327–363. New York, NY: Springer.
47 Ladizinsky, G. (1979). Seed dispersal in relation to the domestication of Middle East legumes. Economic Botany 33: 284–289.
48 Lee, J.P., Uebersax, M.A., Zabik, M.E., Hosfield, G.L. & Lusas, E.W. (1983). Physiochemical characteristics of dry‐roasted navy bean flour fractions. Journal of Food Science 48: 1860–1862, 1875.
49 Luthria, D.L. & Pastor‐Corrales, M.A. (2006). Phenolic acid profiles of beans commonly consumed in the United States. Annual Report of the Bean Improvement Cooperative 49: 6–7.
50 MBC (Michigan Bean Commission). (2020). Bean Classes. Available at https://michiganbean.com/# (accessed July 4, 2020).
51 McEwen, T.J., Dronzek, B.L. & Bushuk, W. (1974). A scanning electron microscope study of faba bean seed. Cereal Chemistry 51: 750–757.
52 Moïse, J.A., Han, S., Gudynaitę‐Savitch, L., Johnson, D.A. & Miki, B.L. (2005). Seed coats: structure, development, composition, and biotechnology. In Vitro Cellular & Developmental Biology‐Plant 41: 620–644.
53 Navabi, A, Rupert, T., Park, S.J., Yu, K., Smith, T.H. & Pauls, K.P. (2103). Apex common bean. Canadian Journal of Plant Sciences 93: 131–135.
54 Njoroge, D.M., Kinyanjui, P.K., Christiaens, S., Shpigelman, A., Makokha, A.O., Sila, D.N. & Hendrickx, M.E. (2015). Effect of storage conditions on pectic polysaccharides in common beans (Phaseolus vulgaris) in relation to the hard‐to‐cook defect. Food Research International 76: 105–113.
55 Novak, R. & Moore, M.D. (2015). Seed certification and seed quality. In: Dry Bean Pest Management & Production, 3rd edition (eds. H.F. Schwartz, M.A. Brick), pp. 19–20. Fort Collins, CO: Colorado State University.
56 Osorno, J.M., Grafton, K.F., Rasmussen, J.B., Rojas‐Cifuentes, G.A., Gelin, R. & Vander‐Wal, A.J. (2009). Release of ‘Eclipse’ black bean. Annual report of the Bean Improvement Cooperative 52: 160–161.
57 Osorno, J.M., Grafton, K.F., Vander Wal, A.J. & Gegner, S.L. (2013). A new small red bean with improved resistance to common bacterial blight: registration of ‘Rio Rojo’. Journal of Plant Registrations 7: 130–134.
58 Osorno, J.M., Vander Wal, A.J., Kloberdanz, M., Pasche, J.S., Schroder, S, & Miklas, P. (2018). A new slow‐darkening pinto bean with improved agronomic performance: registration of ‘ND‐Palomino’. Journal of Plant Registrations 12: 25–30.
59 Osorno, J.M., Vander Wal, A.J., Posch, J., Simons, K., Grafton, K.F. & Pasche, J.S. (2020). ‘ND Whitetail’, a new white kidney bean with high seed yield and intermediate resistance to white mold and bacterial blights. Journal of Plant Registrations 14: 102–109.
60 Powrie, W.D., Adams, M.W. & Pflug, I.J. (1960). Chemical, anatomical, and histochemical studies of the Navy bean seed. Agronomy Journal 52: 163–167.
61 Prasad, R., Shivay, Y.S. & Nene, Y.L. (2016). Asia's contribution to the evolution of agriculture: creativity, history, and mythology. Asian Agri‐History 20: 233–252.
62 Rousseau, S., Kyomugasho, C., Celus, M., Hendrickx, M.E. & Grauwet, T. (2020). Barriers impairing mineral bioaccessibility and bioavailability in plant‐based foods and the perspectives for food processing. Critical Reviews in Food Science and Nutrition 60: 826–843.
63 Ruengsakulrach, S. (1990). Navy bean physico‐chemical characteristics and canned product quality. PhD Dissertation. Michigan State University, East Lansing, Michigan. 162p.
64 Saio, K. (1976). Soybeans resistant to water absorption. Cereal Foods World 21: 168–173.
65 Salunkhe, D.K., Chavan, J.K. & Kadam, S.S. (editors) (1990). Dietary Tannins: Consequences and Remedies, pp. 29–76, 122–134. Boca Raton, FL: CRC Press.
66 Schuchert, W. (2020). Common bean (Phaseolus vulgaris L.). Available at https://s2.lite.msu.edu/res/msu/botonl/b_online/schaugarten/PhaseolusvulgarisL/Common_bean.html (accessed Nov 25, 2020).
67 Schumacher, S. & Boland, M. (2017). Dry edible bean profile. Available at https://www.agmrc.org/commodities‐products/grains‐oilseeds/dry‐edible‐bean‐profile (accessed December 2, 2020).
68 Sefa‐Dedeh, S., & Stanley, D.W. (1979a). The relationship of microstructure of cowpeas to water absorption and dehulling properties. Cereal Chemistry 56: 379–386.
69 Sefa‐Dedeh, S. & Stanley, D.W. (1979b). Textural implications of the microstructure of legumes. Food Technology 33(10): 77–83.
70 Siah, S., Wood, J.A., Agboola, S., Konczak, I. & Blanchard, C.L. (2014). Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba L.) differing in seed coat colours. Food Chemistry 142: 461–468.
71 Singh, B., Singh, J.P., Kaur, A. & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International 101: 1–16.
72 Singh, N. (2017). Pulses: an overview. Journal Food Science and Technology 54: 853–857.
73 Smoliak, S., Ditterline, R.L., Scheetz, J.D., Holzworth, L.K., Sims, J.R., Wiesner, L.R., Baldridge, D.E. & Tibke, G.L. (1990). Montana Interagency Plant Materials Handbook. Bozeman, MT: Montana State University Extension Service.
74 Sutton, L.A. & Coyne, D.P. (2010). Vegetable Cultivar Descriptions for North America − Dry Bean (Lists 1–27). Available at http://cucurbitbreeding.com/todd‐wehner/publications/vegetable‐cultivar‐descriptions‐for‐north‐america/beans‐dry/ (accessed July 21, 2020).
75 Swanson, B.G., Hughes, J.S. & Rasmussen, P.H. (1985). Seed microstructure: a review of water imbibitions in legumes. Food Microstructure 4: 115–124.
76 Tanno, K.I. & Willcox, G. (2006). The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el‐Kerkh, north‐west Syria, late 10th millennium BP. Vegetation History and Archaeobotany 15: 197–204.
77 Uebersax, M.A., Reungsakulrach, S. & Hosfield, G.L. (1989). Uses of common dry field beans. In: Food Uses of Whole Oil and Protein Seeds (eds. E.W. Lusas, D.R. Erickson, W. Nip), pp. 231–253. Champaign, IL: The American Oil Chemists Society.
78 Uebersax, M.A. Reungsakulrach, S. & Occena, L.G. (1991). Strategies and procedures for processing dry beans. Food Technology 45(9): 104–111.
79 UN (United Nations). (2013). Resolution 68/231. International Year of Pulses, 2016. Available at https://undocs.org/en/A/RES/68/231 (accessed September 18, 2020).
80 Urrea, C.A., Steadman, J.R., Pastor‐Corrales, M.A., Lindgren, D.T. & Venegas, J.P. (2009). Registration of great northern common bean cultivar ‘Coyne’ with enhanced disease resistance to common bacterial blight and bean rust. Journal of Plant Registrations 3: 219–222.
81 Urrea, C.A., & Valentin‐Cruzado, E. (2020). 2019 Nebraska dry bean variety trials. Nebraska Extension Publication MP109. 6 p.
82 USDA (United States Department of Agriculture). (2017a). United States Standards for Beans. Available online at http://www.gipsa.usda.gov/fgis/standards/Bean‐Standards.pdf (accessed July 21, 2020).
83 USDA (United States Department of Agriculture). (2017b). United States Standards for Lentils. Available online at http://www.gipsa.usda.gov/fgis/standards/lentils.pdf (accessed July 21, 2020).
84 Voysest, O. (2012). Yellow beans in Latin America. Report 0084‐7747. Cali, Colombia: Centro International de Agricultura Tropical (CIAT).
85 Westphal, E. (1974). Pulses in Ethiopia, their taxonomy and agricultural significance. PhD Dissertation, Wageningen University, Wageningen, Netherlands. 273p.
86 Wiesinger, J.A., Cichy K.A., Tako, E. & Glahn, R.P. (2018). The fast cooking and enhanced iron bioavailability properties of properties of the Manteca yellow bean (Phaseolus vulgaris L.). Nutrients 10: 1609.
87 Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E. & Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural & Food Chemistry 52: 4026–4037.
88 Xu, B.J. & Chang, S.K.C. (2009). Total phenolic, phenolic acid, anthocyanin, flavan‐3‐ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. Journal of Agricultural & Food Chemistry 57: 4754–4764.
89 Zhong, L., Fang, Z., Wahlqvist, M.L., Wu, G., Hodgson, J.M. & Johnson, S.K. (2018). Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends in Food Science & Technology 80: 35–42.
90 Zimmermann, G., Weissmann. S. & Yannai, S. (1967). The distribution of protein, lysine and methionine, and antitryptic activity in the cotyledons of some leguminous seeds. Journal of Food Science 32: 129–130.