Читать книгу Data Mining and Machine Learning Applications - Группа авторов - Страница 26

References

Оглавление

1. Silberschatz, A., Korth, H.F., Sudarshan, S., Database system concepts, Mcgraw-hill, New York, 1997.

2. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., From data mining to knowledge discovery in databases. AI Mag., 17, 3, 37–37, 1996.

3. Tan, P.-N., Steinbach, M., Kumar, V., Introduction to data mining, Pearson Education India, New Delhi, 2016.

4. Sumathi, S. and Sivanandam, S.N., Introduction to data mining and its applications, vol. 29, Springer, Berlin Heidelberg, 2006.

5. Mehrotra, S., Rastogi, R., Korth, H.F., Silberschatz, A., A transaction model for multidatabase systems, in: ICDCS, pp. 56–63. Mining, What Is Data. “Data mining: Concepts and techniques, vol. 10, pp. 559–569, Morgan Kaufmann, 2006.

6. Pyo, S., Uysal, M., Chang, H., Knowledge discovery in the database for tourist destinations. J. Travel Res., California, USA, 40, 4, 374–384, 2002.

7. Gehrke, J., Ginsparg, P., Kleinberg, J., Overview of the 2003 KDD Cup. ACM Sigkdd Explor. Newsl., 5, 2, 149–151, 2003.

8. Shafique, U. and Qaiser, H., A comparative study of data mining process models (KDD, CRISP-DM, and SEMMA). Int. J. Innov. Sci. Res., 12, 1, 217–222, 2014.

9. Mennis, J. and Peuquet, D.J., The role of knowledge representation in geographic knowledge discovery: A case study. Trans. GIS, 7, 3, 371–391, 2003.

10. Mahmood, M.R., Patra, R.K., Raja, R., Sinha, G.R., A Novel Approach for Weather prediction using forecasting analysis and Data Mining Techniques, in: 7th International Conference on Innovations in Computer Science and Engineering on 27–28 July 2018, 2018.

11. Han, J., Kamber, M., Pei, J., Data mining concepts and techniques, third edition, The Morgan Kaufmann Series in Data Management Systems, vol. 5(4), pp. 83–124, Elsevier, Massachusetts, USA, 2011.

12. Zhang, S., Zhang, C., Yang, Q., Data preparation for data mining. Appl. Artif. Intell., 17, 5–6, 375–381, 2003.

13. Agarwal, S., Data mining: Data mining concepts and techniques. 2013 International Conference on Machine Intelligence and Research Advancement, IEEE, 2013.

14. Pathak, S., Raja, R., Sharma, V., Ramya Laxmi, K., A Framework Of ICT Implementation On Higher Educational Institution With Data Mining Approach. Eur. J. Eng. Res. Sci., 4, 5, 2019.

15. Barbará, D. and Jajodia, S. (Eds.), Applications of Data Mining in Computer Security, vol. 6, Springer Science & Business Media, Berlin Heidelberg, 2002.

16. Chen, M.-S., Han, J., Yu, P.S., Data mining: An overview from a database perspective. IEEE Trans. Knowl. Data Eng., 8, 6, 866–883, 1996.

17. Tanveer, S.K., Mining regular patterns in transactional databases. IEICE Trans. Inf. Syst., 91, 11, 2568–2577, 2008.

18. Pathak, S., Bhatt, P., Raja, R., Sharma, V., Weka vs Rapid Miner: Models Comparison in Higher Education with these Two Tools of Data. SAMRIDDHI: A J. Phys. Sciences, Engineering, Technol., 12, Special Issue (3), 183–188, 2019.

19. Gabriel, R., Gluchowski, P., Pasta, A., Data warehouse & data mining, W3l GmbH, Münster, Germany, 2009.

20. Bowles, M., Machine learning in Python: Essential techniques for predictive analysis, John Wiley & Sons, New York, USA, 2015.

21. Nagwanshi, K.K., Atulkar, M., Durugkar, S., Learn Python by Experiments, Educreation Publishing, New Delhi, 2021.

22. Raj, A.P., Raja, R., Akella, S., A New Framework for Trustworthiness of Cloud Services. Int. J. Res., 04, 1, 639–643, December 2017.

23. https://www.anaconda.com/download/

24. https://www.knime.com/

25. https://rapidminer.com/products/studio/

1 *Corresponding author: dr.kapil@ieee.org

Data Mining and Machine Learning Applications

Подняться наверх