Читать книгу Data Mining and Machine Learning Applications - Группа авторов - Страница 39

2.2.5 Mining Imbalanced Data

Оглавление

Actuating classifiers from informational collections having slanted class appropriations is now and again experienced in the information mining measure. In various applications, the family member, as well as the supreme number of certain classes, maybe intensely dwarfed by the recurrence of others. A few models are charge card extortion recognition, where the quantity of fake activities is a lot of lower than the quantity of non-deceitful ones [26]; uncommon sickness clinical findings, where the quantity of patients having the illness is extremely low in the populace [27]; and persistent shortcoming checking assignments where non-flawed cases vigorously dwarf broken cases, to name yet a few. This issue is regularly alluded to in writing as the “class irregularity” issue, as various investigations bring up corruption in the execution of the models extricated from slanted areas, particularly while foreseeing the low spoke to (minority) classes. This horrible showing to the minority classes is entirely bothersome, as they are frequently the classes we are more inspired by. Even though class irregularity is an issue vital in information mining, a total comprehension of how this issue affects the classifiers’ presentation isn’t clear yet.

Data Mining and Machine Learning Applications

Подняться наверх