Читать книгу Functional Foods - Группа авторов - Страница 35

References

Оглавление

1. Verruck, S., Balthazar, C.F., Ramon, S.R., Ramon, S., Esmerino, E.A., Pimentel, T.C., Freitas, M.Q., Silva, M.C., da Cruz, A.G., Prudencio, E.S.: Dairy foods and positive impact on the consumer’s health. Adv. Food Nutr. Res. (2019). https://doi.org/10.1016/BS.AFNR.2019.03.002

2. Turkmen, N., Akal, C., Özer, B.: “Probiotic dairy-based beverages: A review”. J. Funct. Foods. 53, 62–75 (2019). https://doi.org/10.1016/j.jff.2018.12.004

3. Bigliardi, B., Galati, F.: “Innovation trends in the food industry: The case of functional foods”. Trends Food Sci. Technol. 31, 118–129 (2013). https://doi.org/10.1016/j.tifs.2013.03.006

4. Granato, D., Barba, F.J., Bursać Kovačević, D., Lorenzo, J.M., Cruz, A.G., Putnik, P.: “Functional foods: product development, technological trends, efficacy testing, and safety”. Annu. Rev. Food Sci. Technol. 11, 93–118 (2020). https://doi.org/10.1146/annurev-food-032519-051708

5. Research, G.V.: Functional Foods Market Worth $275.7 Billion By 2025|CAGR: 7.9%., https://www.grandviewresearch.com/press-release/global-functional-foods-market

6. Ortiz, Y., G.-A., E., A., C.H., S., R., D.: “Functional dairy products. In: Barbosa-Cánovas, G”. (ed.) Global food security and wellness. pp. 67–103. Springer, New York, NY (2017).

7. Özer, B.H., Kirmaci, H.A.: “Functional milks and dairy beverages”. Int. J. Dairy Technol. 63, 1–15 (2010). https://doi.org/10.1111/j.1471-0307.2009.00547.x

8. Ashwini, A., Ramya, H.N., Ramkumar, C., Reddy, K.R., Kulkarni, R. V., Abinaya, V., Naveen, S., Raghu, A. V.: “Reactive mechanism and the applications of bioactive prebiotics for human health: Review”. J. Microbiol. Methods. 159, 128–137 (2019). https://doi.org/10.1016Zj.mimet2019.02.019

9. Gibson, G.R., Roberfroid, M.B.: “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics”. J. Nutr. 125, 1401–1412 (1995). https://ZZdoi.org/10.1079ZNRR200479

10. Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K., Reid, G.: “Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics”. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017). https://ZZdoi.orgZ10.1038Znrgastro.2017.75

11. àFlorowska, A., Krygier, K., Florowski, T., Dłuzewska, E.: Prebiotics as functional food ingredients preventing diet-related diseases. Food Funct. 7, 2147–55 (2016). https://ZZdoi.orgZ10.1039Zc5fo01459j

12. Farias, D. de P., de Araújo, F.F., Neri-Numa, I.A., Pastore, G.M.: Prebiotics: Trends in food, health and technological applications. Trends Food Sci. Technol. 93, 23–35 (2019). https://ZZdoi.orgZ10.1016Zj.tifs.2019.09.004

13. Gullón, B., Gagaoua, M., Barba, F.J., Gullón, P., Zhang, W., Lorenzo, J.M.: Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 100, 1–18 (2020). https://ZZdoi.orgZ10.1016Zj.tifs.2020.03.039

14. Research, G.V.: Prebiotics market size, share & trends analysis by ingredients (FOS, Inulin, GOS, MOS), by application (Food and Beverages, Dietary Supplements, Animal Feed), by region, and segment forecasts, 2014 – 2024., https://www.grandviewresearch.com/industry-analysis/prebiotics-market.

15. Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid, G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M., Sanders, M.E.: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020). https://ZZdoi.orgZ10.1038Zs41575-020-0344-2

16. Scott, K.P., Grimaldi, R., Cunningham, M., Sarbini, S.R., Wijeyesekera, A., Tang, M.L.K., Lee, J.C.Y., Yau, Y.F., Ansell, J., Theis, S., Yang, K., Menon, R., Arfsten, J., Manurung, S., Gourineni, V., Gibson, G.R.: Developments in understanding and applying prebiotics in research and practice—an ISAPP conference paper. J. Appl. Microbiol. 1–16 (2019). https://doi.org/10.1111/jam.14424

17. Khangwal, I., Shukla, P.: Potential prebiotics and their transmission mechanisms: recent approaches. J. Food Drug Anal. 27, 649–656 (2019). https://doi.org/10.1016/j.jfda.2019.02.003

18. Mohanty, D., Misra, S., Mohapatra, S., Sahu, P.S.: Prebiotics and synbiotics: recent concepts in nutrition. Food Biosci. 26, 152–160 (2018). https://doi.org/10.1016/j.fbio.2018.10.008

19. Singh, S.P., Jadaun, J.S., Narnoliya, L.K., Pandey, A.: Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl. Biochem. Biotechnol. 183, 613–635 (2017). https://doi.org/10.1007/s12010-017-2605-2

20. Sako, T., Tanaka, R.: Prebiotic: Types. In: Fuquay, J., Fox, P., and McSweeney, P. (eds.) Encyclopedia of Dairy Sciences. pp. 4:354-4:365. Elsevier Ltd, London, UK (2011).

21. Tuohy, K.M., Ziemer, C.J., Klinder, A., Knöbel, Y., Pool-Zobel, B.L., Gibson, G.R.: A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microb. Ecol. Health Dis. 14, 165–173 (2002). https://doi.org/10.1080/089106002320644357

22. Seki, N., Hamano, H., Iiyama, Y., Asano, Y., Kokubo, S., Yamauchi, K., Tamura, Y., Uenishi, K., Kudou, H.: Effect of lactulose on calcium and magnesium absorption: a study using stable isotopes in adult men. J. Nutr. Sci. Vitaminol. (Tokyo). 53, 5–12 (2007).

23. van den heuvel, E.G.H.M., Muijs, T., van dokkum, W., Schaafsma, G.: Lactulose stimulates calcium absorption in postmenopausal women. J. Bone Miner. Res. 14, 1211–1216 (1999). https://doi.org/10.1359/jbmr.1999.14.7.1211

24. Ganzle, M.G.: Lactose: Galacto-Oligosaccharides. In: Fuquay, J. W.; Fox, P. F.; Mcsweeney, P.L.H. (ed.) Encyclopedia of Dairy Sciences. pp. 3:209-3:216. Elsevier Ltd, London, UK (2011).

25. Mensink, M.A., Frijlink, H.W., van der Voort Maarschalk, K., Hinrichs, W.L.J.: Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419 (2015). https://doi.org/10.1016/j.carbpol.2015.05.026

26. Gibson, G.R., Probert, H.M., Loo, J. Van, Rastall, R.A., Roberfroid, M.B.: Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259 (2004). https://doi.org/10.1079/NRR200479

27. Franck, A.: Technological functionality of inulin and oligofructose. Br. J. Nutr. 87 Suppl 2, S287–S291 (2002). https://doi.org/10.1079/BJNBJN/2002550

28. Lorenzoni, A.S.G., Aydos, L.F., Klein, M.P., Rodrigues, R.C., Hertz, P.F.: Fructooligosaccharides synthesis by highly stable immobilized β-fructo-furanosidase from Aspergillus aculeatus. Carbohydr. Polym. 103, 193–197 (2014). https://doi.org/10.1016/J.CARBPOL.2013.12.038

29. Švejstil, R., Musilová, Š., Rada, V.: Raffinose-series oligosaccharides in soybean products. Sci. Agric. Bohem. 46, 73–77 (2015). https://doi.org/10.1515/sab-2015-0019

30. Ganter, C., Böck, A., Buckel, P., Mattes, R.: Production of thermostable, recombinant α-galactosidase suitable for raffinose elimination from sugar beet syrup. J. Biotechnol. 8, 301–310 (1988). https://doi.org/10.1016/0168-1656(88)90022-3

31. Dinoto, A., Marques, T.M., Sakamoto, K., Fukiya, S., Watanabe, J., Ito, S., Yokota, A.: Population dynamics of Bifidobacterium species in human feces during raffinose administration monitored by fluorescence in situ hybridization-flow cytometry. Appl. Environ. Microbiol. 72, 7739–47 (2006). https://doi.org/10.1128/AEM.01777-06

32. Samanta, A.K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A.P., Senani, S., Sridhar, M.: Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact. Carbohydrates Diet. Fibre. 5, 62–71 (2015). https://doi.org/10.1016/JfbCDF.2014.12.003

33. Rajagopalan, G., Shanmugavelu, K., Yang, K.-L.: Production of prebiotic-xylooligosaccharides from alkali pretreated mahogany and mango wood sawdust by using purified xylanase of Clostridium strain BOH3. Carbohydr. Polym. 167, 158–166 (2017). https://doi.org/10.1016/J.CARBPOL.2017.03.021

34. Yin, H., Du, Y., Dong, Z.: Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Front. Plant Sci. 7, 522 (2016). https://doi.org/10.3389/fpls.2016.00522

35. Ngo, D.-N., Lee, S.-H., Kim, M.-M., Kim, S.-K.: Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J. Funct. Foods. 1, 188–198 (2009). https://doi.org/10.1016/J.JFF.2009.01.008

36. Muanprasat, C., Chatsudthipong, V.: Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. tter. 170, 80–97 (2017). https://doi.org/10.1016/JfbHARMTHERA.2016.10.013

37. Chang, C.J., Lin, T.L., Tsai, Y.L., Wu, T.R., Lai, W.F., Lu, C.C., Lai, H.C.: Next generation probiotics in disease amelioration. J. Food Drug Anal. 27, 615–622 (2019). https://doi.org/10.1016Zj.jfda.2018.12.011

38. Wu, T.-R., Lin, C.-S., Chang, C.-J., Lin, T.-L., Martel, J., Ko, Y.-F., Ojcius, D.M., Lu, C.-C., Young, J.D., Lai, H.-C.: Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut. 68, 248–262 (2019). https://doi.org/10.1136/gutjnl-2017-315458

39. Neeraj, G., Ravi, S., Somdutt, R., Ravi, S.K., Kumar, V.V.: Immobilized inulinase: a new horizon of paramount importance driving the production of sweetener and prebiotics. Crit. Rev. Biotechnol. 38, 409–422 (2018). https://doi.org/10.1080/07388551.2017.1359146

40. Quezada, M.P., Salinas, C., Gotteland, M., Cardemil, L.: Acemannan and fructans from Aloevera ( Aloe barbadensis Miller) plants as novel prebiotics. J. Agric. Food Chem. 65, 10029–10039 (2017). https://doi.org/10.1021/acs.jafc.7b04100

41. Okolie, C.L., C. K. Rajendran, S.R., Udenigwe, C.C., Aryee, A.N.A., Mason, B.: Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J. Food Biochem. 41, e12392 (2017). https://doi.org/10.1111/jfbc.12392

42. Tian, T., Freeman, S., Corey, M., German, J.B., Barile, D.: Chemical Characterization of potentially prebiotic oligosaccharides in brewed coffee and spent coffee grounds. J. Agric. Food Chem. 65, 2784–2792 (2017). https://doi.org/10.1021/acs.jafc.6b04716

43. Duarte, F.N.D., Rodrigues, J.B., da Costa Lima, M., Lima, M. dos S., Pacheco, M.T.B., Pintado, M.M.E., de Souza Aquino, J., de Souza, E.L.: Potential prebiotic properties of cashew apple ( Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species. J. Sci. Food Agric. 97, 3712–3719 (2017). https://ZZdoi.orgZ10.1002Zjsfa.8232

44. Mano, M.C.R., Neri-Numa, I.A., da Silva, J.B., Paulino, B.N., Pessoa, M.G., Pastore, G.M.: Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl. Microbiol. Biotechnol. 102, 17–37 (2018). https://ZZdoi.orgZ10.1007Zs00253-017-8564-2

45. Karimi, R., Azizi, M.H., Ghasemlou, M., Vaziri, M.: Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydr. Polym. 119, 85–100 (2015). https://doi.org/10.1016/j.carbpol.2014.11.029

46. Mensink, M.A., Frijlink, H.W., van der Voort Maarschalk, K., Hinrichs, W.L.J.J.: Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr. Polym. 134, 418–428 (2015). https://doi.org/10.1016/j.carbpol.2015.08.022

47. Dantas, A., Verruck, S., Balthazar, C.F., Esmerino, E.A., Guimarães, J.T., Rocha, R.S., Pimentel, T.C., Cruz, A.G. da, Prudencio, E.S.: Inovaçôes no Desenvolvimento de Derivados Lácteos Probióticos, Prebióticos e Simbióticos. In: Cruz, A.G. da, Prudencio, E.S., Esmerino, E.A., Pimentel, T.C., Zacarchenco, P.B., Alves, A.T.S. e, and Leila Maria Spadoti (eds.) Inovaçôes e Avanços em Ciência e Tecnologia de Leite e Derivados. pp. 215–236. Editora Setembro, São Paulo, SP (2019).

48. Debon, J., Prudêncio, E.S., Petrus, J.C.C., Fritzen-Freire, C.B., Müller, C.M.O., Amboni, R.D. de M.C., Vieira, C.R.W.: Storage stability of prebiotic fermented milk obtained from permeate resulting of the microfiltration process. LWT - Food Sci. Technol. 47, 96–102 (2012). https://doi.org/https://doi.org/10.1016/j.lwt.2011.12.029

49. Guimarães, J.T., Silva, E.K., Costa, A.L.R., Cunha, R.L., Freitas, M.Q., Meireles, M.A.A., Cruz, A.G.: Manufacturing a prebiotic whey beverage exploring the influence of degree of inulin polymerization. Food Hydrocoll. 77, 787–795 (2018). https://ZZdoi.orgZhttps:ZZdoi.orgZ10.1016Zj.foodhyd.2017.11.021

50. Balthazar, C.F., Conte Júnior, C.A., Moraes, J., Costa, M.P., Raices, R.S.L., Franco, R.M., Cruz, A.G., Silva, A.C.O.: Physicochemical evaluation of sheep milk yogurts containing different levels of inulin. J. Dairy Sci. 99, 4160–4168 (2016). https://ZZdoi.orgZhttps:ZZdoi.orgZ10.3168Zjds.2015-10072

51. Crispín-Isidro, G., Lobato-Calleros, C., Espinosa-Andrews, H., Alvarez-Ramirez, J., Vernon-Carter, E.J.: Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt. LWT - Food Sci. Technol. 62, 438–444 (2015). https://doi.org/https://doi.org/10.1016/j.lwt.2014.06.042

52. Kip, P., Meyer, D., Jellema, R.H.: Inulins improve sensoric and textural properties of low-fat yoghurts. Int. Dairy J. 16, 1098–1103 (2006). https://doi.org/10.1016/J.IDAIRYJ.2005.10.011

53. àGuven, M., Yasar, K., Karaca, O.B., Hayaloglu, A.A.,: The effect of inulin as a fat replacer on the quality of set-type low-fat yogurt manufacture - GUVEN - 2005 - International Journal of Dairy Technology - Wiley Online Library. Int. J. Dairy Technol. 58, 180–184 (2005). https://doi.org/10.1111/j.1471-0307.2005.00210.x

54. Aryana, K.J., Plauche, S., Rao, R.M., McGrew, P., Shah, N.P.: Fat-free plain yogurt manufactured with inulins of various chain lengths and Lactobacillus acidophilus. J. Food Sci. 72, M79-84 (2007). https://doi.org/10.1111/j.1750-3841.2007.00302.x

55. àPaseephol, T., Small, D.M., Sherkat, F.,: Rheology and texture of set yogurt as affected by inulin addition. J. Texture Stud. 617–634 (2008). https://doi.org/10.1111/j.1745-4603.2008.00161.x

56. Cruz, A.G., Cavalcanti, R.N., Guerreiro, L.M.R., Sant’Ana, A.S., Nogueira, L.C., Oliveira, C.A.F., Deliza, R., Cunha, R.L., Faria, J.A.F., Bolini, H.M.A.: Developing a prebiotic yogurt: rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. J. Food Eng. 114, 323–330 (2013). https://doi.org/https://doi.org/10.1016/j.jfoodeng.2012.08.018

57. Sanz, T., Salvador, A., Jiménez, A., Fiszman, S.M.: Yogurt enrichment with functional asparagus fibre. Effect of fibre extraction method on rheological properties, colour, and sensory acceptance. Eur. Food Res. Technol. 227, 1515–1521 (2008). https://doi.org/10.1007/s00217-008-0874-2

58. àStafollo, M.D., Bertola, N., Martino, M., Bevilacqua, A.,: Influence of dietary fiber addition on sensory and rheological properties of yogurt. Int. Dairy J. 14, 263–268 (2004). https://doi.org/https://doi.org/10.1016/j.idairyj.2003.08.004

59. Balthazar, C.F., Silva, H.L.A., Cavalcanti, R.N., Esmerino, E.A., Cappato, L.P., Abud, Y.K.D., Moraes, J., Andrade, M.M., Freitas, M.Q., Sant’Anna, C., Raices, R.S.L., Silva, M.C., Cruz, A.G.: Prebiotics addition in sheep milk ice cream: A rheological, microstructural and sensory study. J. Funct. Foods. 35, 564–573 (2017). https://doi.org/10.1016/j.jff.2017.06.004

60. Akbari, M., Eskandari, M.H., Niakosari, M., Bedeltavana, A.: The effect of inulin on the physicochemical properties and sensory attributes of low-fat ice cream. Int. Dairy J. 57, 52–55 (2016). https://doi.org/10.1016/J.IDAIRYJ.2016.02.040

61. Soukoulis, C., Lebesi, D., Tzia, C.: Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chem. 115, 665–671 (2009). https://doi.org/10.1016/J.FOODCHEM.2008.12.070

62. O’Connor, T.P., O’Brien, N.M.: Butter and other milk fat products. Fat replacers. Elsevier Ltd, Oxford, UK (2011).

63. Fadaei, V., Poursharif, K., Daneshi, M., Honarvar, M.: Advances in crop science and technology. OMICS International (2013).

64. Meyer, D., Bayarri, S., Tárrega, A., Costell, E.: Inulin as texture modifier in dairy products. Food Hydrocoll. 25, 1881–1890 (2011). https://doi.org/10.1016/J.FOODHYD.2011.04.012

65. Bot, A., Erle, U., Vreeker, R., Agterof, W.G..: Influence of crystallisation conditions on the large deformation rheology of inulin gels. Food Hydrocoll. 18, 547–556 (2004). https://doi.org/10.1016/J.FOODHYD.2003.09.003

66. Koca, N., Metin, M.: Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. Int. Dairy J. 14, 365–373 (2004). https://doi.org/10.1016/J.IDAIRYJ.2003.08.006

67. Wadhwani, R., Martini, S., Walsh, M.K., Ward, R.E., Mclellan, M.R.: Investigating the strategies to improve the quality of low-fat mozzarella and cheddar cheeses. (2011).

68. Salvatore, E., Pes, M., Mazzarello, V., Pirisi, A.: Replacement of fat with long-chain inulin in a fresh cheese made from caprine milk. Int. Dairy J. 34, 1–5 (2014). https://doi.org/10.1016/J.IDAIRYJ.2013.07.007

69. Balthazar, C.F., Silva, H.L.A., Celeguini, R.M.S., Santos, R., Pastore, G.M., Junior, C.A.C., Freitas, M.Q., Nogueira, L.C., Silva, M.C., Cruz, A.G.: Effect of galactooligosaccharide addition on the physical, optical, and sensory acceptance of vanilla ice cream. J. Dairy Sci. 98, 4266–72 (2015). https://doi.org/10.3168/jds.2014-9018

70. Sangwan, V., Tomar, S.K., Singh, R.R.B., Singh, A.K., Ali, B.: Galactooligosaccharides: novel components of designer foods. J. Food Sci. 76, R103–R111 (2011). https://doi.org/10.1111/j.1750-3841.2011.02131.x

71. Čurda, L., Rudolfová, J., Štětina, J., Dryák, B.: Dried buttermilk containing galactooligosaccharides—process layout and its verification. J. Food Eng. 77, 468–471 (2006). https://doi.org/10.1016/J.JFOODENG.2005.07.016

72. Mumtaz, S., - Ur - Rehman, S., Huma, N., Jamil, A., Nawaz, H.: Xylooligosaccharide enriched yoghurt: physicochemical and sensory evaluation. Pakistan J. Nutr. 7, 566–569 (2008). https://doi.org/10.3923/pjn.2008.566.569

73. Mumtaz, S., Rehman, S.-, Huma, N., Jamil, A.: Effect of xylooligosaccharide enriched yogurt on serum profile in Albino rats. Pakistan J. Nutr. 8, 1756–1759 (2009). https://doi.org/10.3923/pjn.2009.1756.1759

74. Ferrão, L.L., Ferreira, M.V.S., Cavalcanti, R.N., Carvalho, A.F.A., Pimentel, T.C., Silva, H.L.A., Silva, R., Esmerino, E.A., Neto, R.P.C., Tavares, M.I.B., Freitas, M.Q., Menezes, J.C.V., Cabral, L.M., Moraes, J., Silva, M.C., Mathias, S.P., Raices, R.S.L., Pastore, G.M., Cruz, A.G.: The xylooligosaccharide addition and sodium reduction in requeijão cremoso processed cheese. Food Res. Int. 107, 137–147 (2018). https://doi.org/10.1016/j.foodres.2018.02.018

75. Collado, M.C., Vinderola, G., Salminen, S.: Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Benef. Microbes. 10, 711–719 (2019). https://ZZdoi.orgZ10.3920ZBM2019.0015

76. Shanahan, F., Collins, S.M.: Pharmabiotic manipulation of the microbiota in gastrointestinal disorders, from rationale to reality. Gastroenterol. Clin. North Am. 39, 721–726 (2010). https://doi.org/10.1016/j.gtc.2010.08.006

77. Ferreira, C.L.L.F.: Benefícios das culturas lácticas probióticas. In: Oliveira, M. (ed.) Tecnologia de Produtos Lácteos Funcionais. pp. 213–234. Atheneu, Sao Paulo, SP (2009).

78. Bengmark, S., García De Lorenzo, A., Culebras, J.M.: Use of pro-, pre- and synbiotics in the ICU - Future options, https://www.scopus.com/record/display.uri?eid=2-s2.00035708755&origin=inward&txGid=e368c4c3de9a19ae798f4982257aca25, (2001).

79. Ritchie, M.L., Romanuk, T.N.: A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One. 7, e34938 (2012). https://ZZdoi.orgZ10.1371Z journal.pone.0034938

80. Chauhan, S. V., Chorawala, M.R.: PROBIOTICS, PREBIOTICS AND SYNBIOTICS. Int. J. Pharm. Sci. Res. 3, (2014). https://ZZdoi.orgZ10.13040ZIJPSR.0975-8232.3(3).711-26

81. Shafi, A., Farooq, U., Akram, K., Hayat, Z., Murtaza, M.A.: Prevention and control of diseases by use of pro- and prebiotics (synbiotics). Food Rev. Int. 30, 291–316 (2014). https://ZZdoi.orgZ10.1080Z87559129.2014.929142

82. FAO/WHO: Probiotics in food: Health and nutritional properties and guidelines for evaluation. Food and Agriculture Organization of the United Nations/World Health Organization. Food Nutr. Pap. 85, 413–426 (2006). https://ZZdoi.orgZ10.1201Z9781420009613.ch16

83. Wang, S., Zhu, H., Lu, C., Kang, Z., Luo, Y., Feng, L., Lu, X.: Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals. J. Dairy Sci. 95, 4813–4822 (2012). https://ZZdoi.orgZ10.3168ZJDS.2012-5426

84. Chen, Y.-P., Hsu, C.-A., Hung, W.-T., Chen, M.-J.: Effects of Lactobacillus paracasei 01 fermented milk beverage on protection of intestinal epithelial cell in vitro. J. Sci. Food Agric. 96, 2154–2160 (2016). https://doi.org/10.1002/jsfa.7331

85. Oh, N.S., Lee, H.A., Myung, J.H., Lee, J.Y., Joung, J.Y., Shin, Y.K., Baick, S.C.: Effect of different commercial oligosaccharides on the fermentation properties in Kefir during fermentation. Korean J. Food Sci. Anim. Resour. 33, 325–330 (2013). https://ZZdoi.orgZ10.5851Zkosfa.2013.33.3.325

86. Valencia, M.S., Salgado, S.M., Andrade, S.A.C., Padilha, V.M., Livera, A.V.S., Stamford, T.L.M.: Development of creamy milk chocolate dessert added with fructo-oligosaccharide and Lactobacillus paracasei subsp paracasei LBC 81. Lwt-Food Sci. Technol. 69, 104–109 (2016). https://doi.org/10.1016/). lwt.2016.01.039

87. Barbosa, I.C., Oliveira, M.E.G., Madruga, M.S., Gullon, B., Pacheco, M.T.B., Gomes, A.M.P., Batista, A.S.M., Pintado, M.M.E., Souza, E.L., Queiroga, R.C.R.E., Gullón, B., Pacheco, M.T.B., Gomes, A.M.P., Batista, A.S.M., Pintado, M.M.E., Souza, E.L., Queiroga, R.C.R.E.: Influence of the addition of Lactobacillus acidophilus La-05, Bifidobacterium animalis subsp lactis Bb-12 and inulin on the technological, physicochemical, microbiological and sensory features of creamy goat cheese. Food Funct. 7, 4356–4371 (2016). https://doi.org/10.1039/c6fo00657d

88. Delavari, M., Pourahmad, R., Sokutifar, R.: Production of low fat synbiotic yogurt containing Lactobacillus plantarum and inulin. 8, 17–24 (2014).

89. Shaghaghi, M., Pourahmad, R., Adeli, H.R.M.: Synbiotic yogurt production by using prebiotic compounds and probiotic lactobacilli. Int. Res. J. Appl. Basic Sci. 5, 839–846 (2013).

90. Padilha, M., Villarreal Morales, M.L., Vieira, A.D.S., Costa, M.G.M., Saad, S.M.I.: A prebiotic mixture improved Lactobacillus acidophilus and Bifidobacterium animalis gastrointestinal in vitro resistance in petit-suisse. Food Funct. 7, 2312–2319 (2016). https://doi.org/10.1039/C5FO01592H

91. Cardarelli, H.R., Saad, S.M.I., Gibson, G.R., Vulevic, J.: Functional petit-suisse cheese: Measure of the prebiotic effect. Anaerobe. 13, 200–207 (2007). https://doi.org/10.1016/j.anaerobe.2007.05.003

92. Martinez, R.C.R., Staliano, C.D., Vieira, A.D.S., Villarreal, M.L.M., Todorov, S.D., Saad, S.M.I., Franco, B.D.G. de M.: Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subspp. sakei 2a in a potentially synbiotic cheese spread. Food Microbiol. 48, 143–152 (2015). https://doi.org/10.1016/J.FM.2014.12.010

93. Kinik, O., Kesenkas, H., Ergonul, P.G., Akan, E., Kınık, Ö., Kesenkaş, H., Günç Ergönül, P., Akan, E.: The effect of using pro and prebiotics on the aromatic compounds, textural and sensorial properties of synbi-otic goat cheese. Mljekarstvo. 67, 71–85 (2017). https://doi.org/10.15567/mljekarstvo.2017.0108

94. Beltrao, F.A.S., de Moura, C.V.R., Madruga, M.S., de Andrade, A.E.B.: Evaluation of the fatty acid profile of synbiotic chevrotin cheese. J. Candido Tostes Dairy Inst. 72, 11–18 (2017). https://doi.org/10.14295/2238-6416.v72i1.538

95. Munoz, I. de B., Machado Canella, M.H., Verruck, S., Olivera Muller, C.M., de Liz, G.R., Castanho Amboni, R.D. de M., Prudencio, E.S., Canella, M.H.M., Verruck, S., Muller, C.M.O., Liz, G.R. de, Amboni, R.D. de M.C., Prudencio, E.S.: Potential of Milk freeze concentration for the production of functional fresh cheeses. Adv. J. Food Sci. Technol. 13, 196–209 (2017). https://doi.org/10.19026/ajfst.13.5069

96. de Almeida, J. dos S.O., Dias, C.O., Pinto, S.S., Pereira, L.C., Verruck, S., Fritzen-Freire, C.B., Amante, E.R., Prudêncio, E.S., Amboni, R.D.M.C., Almeida, J. dos S.O. de, Dias, C.O., Pinto, S.S., Pereira, L.C., Verruck, S., Fritzen-Freire, C.B., Amante, E.R., Prudêncio, E.S., Amboni, R.D.M.C.: Probiotic Mascarpone-type cheese: Characterisation and cell viability during storage and simulated gastrointestinal conditions. Int. J. Dairy Technol. 71, 195–203 (2018). https://doi.org/10.1111/1471-0307.12457

97. Pinto, S.S., Cavalcante, B.D., Verruck, S., Alves, L.F., Prudêncio, E.S., Amboni, R.D.: Effect of the incorporation of Bifidobacterium BB-12 microencapsulated with sweet whey and inulin on the properties of Greek-style yogurt. J. Food Sci. Technol. 54, 2804–2813 (2017). https://doi.org/10.1007/s13197-017-2717-2

98. Costa, M.P., Frasao, B.S., Silva, A.C.O., Freitas, M.Q., Franco, R.M., Conte-Junior, C.A.: Cupuassu (Theobromagrandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts. J. Dairy Sci. 98, 5995–6003 (2015). https://doi.org/10.3168/jds.2015-9738

99. do Espírito Santo, A.P., Perego, P., Converti, A., Oliveira, M.N.: Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Sci. Technol. 47, 393–399 (2012). https://doi.org/https://doi.org/10.1016/j.lwt.2012.01.038

100. Ehsani, A., Banihabib, E.K., Hashemi, M., Saravani, M., Yarahmadi, E.: Evaluation of Various Properties of Synbiotic Yoghurt of Buffalo Milk. J. Food Process. Preserv. 40, 1466–1473 (2016). https://doi.org/10.1111/jfpp.12732

101. Silveira, E.O. da, Lopes Neto, J.H.J.H., Silva, L.A. da, Raposo, A.E.S., Magnani, M., Cardarelli, H.R.H.R.: The effects of inulin combined with oligofructose and goat cheese whey on the physicochemical properties and sensory acceptance of a probiotic chocolate goat dairy beverage. LWT – Food Sci. Technol. 62, 445–451 (2015). https://doi.org/ https://doi.org/10.1016/j.lwt.2014.09.056

102. Fornelli, A.R., Bandiera, N.S., Costa, M.D., de Souza, C.H.B., de Santana, E.H.W., Sivieri, K., Aragon-Alegro, L.C.: Effect of inulin and oligofructose on the physicochemical, microbiological and sensory characteristics of synbiotic dairy beverages. Semin. Agrar. 35, 3099–3111 (2015). https://doi.org/10.5433/1679-0359.2014v35n6p3099

103. de Castro, F.P., Cunha, T.M., Ogliari, P.J., Teófilo, R.F., Ferreira, M.M.C., Prudêncio, E.S.: Influence of different content of cheese whey and oligofructose on the properties of fermented lactic beverages: Study using response surface methodology. LWT - Food Sci. Technol. 42, 993–997 (2009). https://doi.org/ https://doi.org/10.1016/j.lwt.2008.12.010

104. Villalva, F.J., Cravero Bruneri, A.P., Vinderola, G., Goncalvez De Oliveira, E., Paz, N.F., Ramon, A.N.: Formulation of a peach ice cream as potential synbiotic food. Food Sci. Technol. 37, 456–461 (2017). https://doi.org/10.1590/1678-457x.19716

105. Noori, F., Ebrahimi, M.T., Jafari, P.: Growth Optimization of Lactobacillus plantarum T5jq301796.1, an Iranian Indigenous Probiotic in Lab Scale Fermenter. Appl. Food Biotechnol. 3, 188–193 (2016).

106. Fragoso, M., Perez-Chabela, M.L., Hernandez-Alcantara, A.M., Escalona-Buendia, H.B., Pintor, A., Totosaus, A.: Sensory, melting and textural properties of fat-reduced ice cream inoculated with thermotolerant lactic acid bacteria. Carpathian J. Food Sci. Technol. 8, 11–21 (2016).

107. Nagendra, R., Viswanatha, S., Kumar, S.A., Murthy, B.K., Rao, S.V.: Effect of feeding milk formula containing lactulose to infants on faecal bifidobacterial flora. Nutr. Res. 15, 15–24 (1995). https://doi.org/10.1016/0271-5317(95)91649-W

108. Nagendra, R., Baskaran, M. V., Rao, S.V.: Shelf-life of spray-dried infant formula supplemented with lactulose. J. Food Process. Preserv. 19, 303–315 (1995). https://doi.org/10.1111/j.1745-4549.1995.tb00296.x

109. Kokke, F.T.M., Scholtens, P.A.M.J., Alles, M.S., Decates, T.S., Fiselier, T.J.W., Tolboom, J.J.M., Kimpen, J.L.L., Benninga, M.A.: A dietary fiber mixture versus lactulose in the treatment of childhood constipation: a double-blind randomized controlled trial. J. Pediatr. Gastroenterol. Nutr. 47, 592–7 (2008).

110. Özer, D., Akin, S., Özer, B.: Effect of Inulin and Lactulose on Survival of Lactobacillus AcidophilusLA-5 and Bifidobacterium Bifidum BB-02 in Acidophilus-Bifidus Yoghurt. Food Sci. Technol. Int. 11, 19–24 (2005). https://ZZdoi.orgZ10.1177Z1082013205051275

111. Martínez-Villaluenga, C., Frías, J., Gómez, R., Vidal-Valverde, C.: Influence of addition of raffinose family oligosaccharides on probiotic survival in fermented milk during refrigerated storage. Int. Dairy J. 16, 768-774 (2006). https://ZZdoi.orgZ10.1016ZJ.IDAIRYJ.2005.08.002

112. Ben, X.-M., Li, J., Feng, Z.-T., Shi, S.-Y., Lu, Y.-D., Chen, R., Zhou, X.-Y.: Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World J. Gastroenterol. 14, 6564–8 (2008).

113. Martinez-Gutierrez, F., Ratering, S., Juarez-Flores, B., Godinez-Hernandez, C., Geissler-Plaum, R., Prell, F., Zorn, H., Czermak, P., Schnell, S.: Potential use of Agave salmiana as a prebiotic that stimulates the growth of probiotic bacteria. LWT-Food Sci. Technol. 84, 151–159 (2017). https://doi.org/10.1016/j.lwt2017.05.044

1 *Corresponding author: Adriano.cruz@ifrj.edu.br

Functional Foods

Подняться наверх