Читать книгу Functional Foods - Группа авторов - Страница 35
References
Оглавление1. Verruck, S., Balthazar, C.F., Ramon, S.R., Ramon, S., Esmerino, E.A., Pimentel, T.C., Freitas, M.Q., Silva, M.C., da Cruz, A.G., Prudencio, E.S.: Dairy foods and positive impact on the consumer’s health. Adv. Food Nutr. Res. (2019). https://doi.org/10.1016/BS.AFNR.2019.03.002
2. Turkmen, N., Akal, C., Özer, B.: “Probiotic dairy-based beverages: A review”. J. Funct. Foods. 53, 62–75 (2019). https://doi.org/10.1016/j.jff.2018.12.004
3. Bigliardi, B., Galati, F.: “Innovation trends in the food industry: The case of functional foods”. Trends Food Sci. Technol. 31, 118–129 (2013). https://doi.org/10.1016/j.tifs.2013.03.006
4. Granato, D., Barba, F.J., Bursać Kovačević, D., Lorenzo, J.M., Cruz, A.G., Putnik, P.: “Functional foods: product development, technological trends, efficacy testing, and safety”. Annu. Rev. Food Sci. Technol. 11, 93–118 (2020). https://doi.org/10.1146/annurev-food-032519-051708
5. Research, G.V.: Functional Foods Market Worth $275.7 Billion By 2025|CAGR: 7.9%., https://www.grandviewresearch.com/press-release/global-functional-foods-market
6. Ortiz, Y., G.-A., E., A., C.H., S., R., D.: “Functional dairy products. In: Barbosa-Cánovas, G”. (ed.) Global food security and wellness. pp. 67–103. Springer, New York, NY (2017).
7. Özer, B.H., Kirmaci, H.A.: “Functional milks and dairy beverages”. Int. J. Dairy Technol. 63, 1–15 (2010). https://doi.org/10.1111/j.1471-0307.2009.00547.x
8. Ashwini, A., Ramya, H.N., Ramkumar, C., Reddy, K.R., Kulkarni, R. V., Abinaya, V., Naveen, S., Raghu, A. V.: “Reactive mechanism and the applications of bioactive prebiotics for human health: Review”. J. Microbiol. Methods. 159, 128–137 (2019). https://doi.org/10.1016Zj.mimet2019.02.019
9. Gibson, G.R., Roberfroid, M.B.: “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics”. J. Nutr. 125, 1401–1412 (1995). https://ZZdoi.org/10.1079ZNRR200479
10. Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K., Reid, G.: “Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics”. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017). https://ZZdoi.orgZ10.1038Znrgastro.2017.75
11. àFlorowska, A., Krygier, K., Florowski, T., Dłuzewska, E.: Prebiotics as functional food ingredients preventing diet-related diseases. Food Funct. 7, 2147–55 (2016). https://ZZdoi.orgZ10.1039Zc5fo01459j
12. Farias, D. de P., de Araújo, F.F., Neri-Numa, I.A., Pastore, G.M.: Prebiotics: Trends in food, health and technological applications. Trends Food Sci. Technol. 93, 23–35 (2019). https://ZZdoi.orgZ10.1016Zj.tifs.2019.09.004
13. Gullón, B., Gagaoua, M., Barba, F.J., Gullón, P., Zhang, W., Lorenzo, J.M.: Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 100, 1–18 (2020). https://ZZdoi.orgZ10.1016Zj.tifs.2020.03.039
14. Research, G.V.: Prebiotics market size, share & trends analysis by ingredients (FOS, Inulin, GOS, MOS), by application (Food and Beverages, Dietary Supplements, Animal Feed), by region, and segment forecasts, 2014 – 2024., https://www.grandviewresearch.com/industry-analysis/prebiotics-market.
15. Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid, G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M., Sanders, M.E.: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020). https://ZZdoi.orgZ10.1038Zs41575-020-0344-2
16. Scott, K.P., Grimaldi, R., Cunningham, M., Sarbini, S.R., Wijeyesekera, A., Tang, M.L.K., Lee, J.C.Y., Yau, Y.F., Ansell, J., Theis, S., Yang, K., Menon, R., Arfsten, J., Manurung, S., Gourineni, V., Gibson, G.R.: Developments in understanding and applying prebiotics in research and practice—an ISAPP conference paper. J. Appl. Microbiol. 1–16 (2019). https://doi.org/10.1111/jam.14424
17. Khangwal, I., Shukla, P.: Potential prebiotics and their transmission mechanisms: recent approaches. J. Food Drug Anal. 27, 649–656 (2019). https://doi.org/10.1016/j.jfda.2019.02.003
18. Mohanty, D., Misra, S., Mohapatra, S., Sahu, P.S.: Prebiotics and synbiotics: recent concepts in nutrition. Food Biosci. 26, 152–160 (2018). https://doi.org/10.1016/j.fbio.2018.10.008
19. Singh, S.P., Jadaun, J.S., Narnoliya, L.K., Pandey, A.: Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl. Biochem. Biotechnol. 183, 613–635 (2017). https://doi.org/10.1007/s12010-017-2605-2
20. Sako, T., Tanaka, R.: Prebiotic: Types. In: Fuquay, J., Fox, P., and McSweeney, P. (eds.) Encyclopedia of Dairy Sciences. pp. 4:354-4:365. Elsevier Ltd, London, UK (2011).
21. Tuohy, K.M., Ziemer, C.J., Klinder, A., Knöbel, Y., Pool-Zobel, B.L., Gibson, G.R.: A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microb. Ecol. Health Dis. 14, 165–173 (2002). https://doi.org/10.1080/089106002320644357
22. Seki, N., Hamano, H., Iiyama, Y., Asano, Y., Kokubo, S., Yamauchi, K., Tamura, Y., Uenishi, K., Kudou, H.: Effect of lactulose on calcium and magnesium absorption: a study using stable isotopes in adult men. J. Nutr. Sci. Vitaminol. (Tokyo). 53, 5–12 (2007).
23. van den heuvel, E.G.H.M., Muijs, T., van dokkum, W., Schaafsma, G.: Lactulose stimulates calcium absorption in postmenopausal women. J. Bone Miner. Res. 14, 1211–1216 (1999). https://doi.org/10.1359/jbmr.1999.14.7.1211
24. Ganzle, M.G.: Lactose: Galacto-Oligosaccharides. In: Fuquay, J. W.; Fox, P. F.; Mcsweeney, P.L.H. (ed.) Encyclopedia of Dairy Sciences. pp. 3:209-3:216. Elsevier Ltd, London, UK (2011).
25. Mensink, M.A., Frijlink, H.W., van der Voort Maarschalk, K., Hinrichs, W.L.J.: Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419 (2015). https://doi.org/10.1016/j.carbpol.2015.05.026
26. Gibson, G.R., Probert, H.M., Loo, J. Van, Rastall, R.A., Roberfroid, M.B.: Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259 (2004). https://doi.org/10.1079/NRR200479
27. Franck, A.: Technological functionality of inulin and oligofructose. Br. J. Nutr. 87 Suppl 2, S287–S291 (2002). https://doi.org/10.1079/BJNBJN/2002550
28. Lorenzoni, A.S.G., Aydos, L.F., Klein, M.P., Rodrigues, R.C., Hertz, P.F.: Fructooligosaccharides synthesis by highly stable immobilized β-fructo-furanosidase from Aspergillus aculeatus. Carbohydr. Polym. 103, 193–197 (2014). https://doi.org/10.1016/J.CARBPOL.2013.12.038
29. Švejstil, R., Musilová, Š., Rada, V.: Raffinose-series oligosaccharides in soybean products. Sci. Agric. Bohem. 46, 73–77 (2015). https://doi.org/10.1515/sab-2015-0019
30. Ganter, C., Böck, A., Buckel, P., Mattes, R.: Production of thermostable, recombinant α-galactosidase suitable for raffinose elimination from sugar beet syrup. J. Biotechnol. 8, 301–310 (1988). https://doi.org/10.1016/0168-1656(88)90022-3
31. Dinoto, A., Marques, T.M., Sakamoto, K., Fukiya, S., Watanabe, J., Ito, S., Yokota, A.: Population dynamics of Bifidobacterium species in human feces during raffinose administration monitored by fluorescence in situ hybridization-flow cytometry. Appl. Environ. Microbiol. 72, 7739–47 (2006). https://doi.org/10.1128/AEM.01777-06
32. Samanta, A.K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A.P., Senani, S., Sridhar, M.: Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact. Carbohydrates Diet. Fibre. 5, 62–71 (2015). https://doi.org/10.1016/JfbCDF.2014.12.003
33. Rajagopalan, G., Shanmugavelu, K., Yang, K.-L.: Production of prebiotic-xylooligosaccharides from alkali pretreated mahogany and mango wood sawdust by using purified xylanase of Clostridium strain BOH3. Carbohydr. Polym. 167, 158–166 (2017). https://doi.org/10.1016/J.CARBPOL.2017.03.021
34. Yin, H., Du, Y., Dong, Z.: Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Front. Plant Sci. 7, 522 (2016). https://doi.org/10.3389/fpls.2016.00522
35. Ngo, D.-N., Lee, S.-H., Kim, M.-M., Kim, S.-K.: Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J. Funct. Foods. 1, 188–198 (2009). https://doi.org/10.1016/J.JFF.2009.01.008
36. Muanprasat, C., Chatsudthipong, V.: Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. tter. 170, 80–97 (2017). https://doi.org/10.1016/JfbHARMTHERA.2016.10.013
37. Chang, C.J., Lin, T.L., Tsai, Y.L., Wu, T.R., Lai, W.F., Lu, C.C., Lai, H.C.: Next generation probiotics in disease amelioration. J. Food Drug Anal. 27, 615–622 (2019). https://doi.org/10.1016Zj.jfda.2018.12.011
38. Wu, T.-R., Lin, C.-S., Chang, C.-J., Lin, T.-L., Martel, J., Ko, Y.-F., Ojcius, D.M., Lu, C.-C., Young, J.D., Lai, H.-C.: Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut. 68, 248–262 (2019). https://doi.org/10.1136/gutjnl-2017-315458
39. Neeraj, G., Ravi, S., Somdutt, R., Ravi, S.K., Kumar, V.V.: Immobilized inulinase: a new horizon of paramount importance driving the production of sweetener and prebiotics. Crit. Rev. Biotechnol. 38, 409–422 (2018). https://doi.org/10.1080/07388551.2017.1359146
40. Quezada, M.P., Salinas, C., Gotteland, M., Cardemil, L.: Acemannan and fructans from Aloevera ( Aloe barbadensis Miller) plants as novel prebiotics. J. Agric. Food Chem. 65, 10029–10039 (2017). https://doi.org/10.1021/acs.jafc.7b04100
41. Okolie, C.L., C. K. Rajendran, S.R., Udenigwe, C.C., Aryee, A.N.A., Mason, B.: Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J. Food Biochem. 41, e12392 (2017). https://doi.org/10.1111/jfbc.12392
42. Tian, T., Freeman, S., Corey, M., German, J.B., Barile, D.: Chemical Characterization of potentially prebiotic oligosaccharides in brewed coffee and spent coffee grounds. J. Agric. Food Chem. 65, 2784–2792 (2017). https://doi.org/10.1021/acs.jafc.6b04716
43. Duarte, F.N.D., Rodrigues, J.B., da Costa Lima, M., Lima, M. dos S., Pacheco, M.T.B., Pintado, M.M.E., de Souza Aquino, J., de Souza, E.L.: Potential prebiotic properties of cashew apple ( Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species. J. Sci. Food Agric. 97, 3712–3719 (2017). https://ZZdoi.orgZ10.1002Zjsfa.8232
44. Mano, M.C.R., Neri-Numa, I.A., da Silva, J.B., Paulino, B.N., Pessoa, M.G., Pastore, G.M.: Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl. Microbiol. Biotechnol. 102, 17–37 (2018). https://ZZdoi.orgZ10.1007Zs00253-017-8564-2
45. Karimi, R., Azizi, M.H., Ghasemlou, M., Vaziri, M.: Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydr. Polym. 119, 85–100 (2015). https://doi.org/10.1016/j.carbpol.2014.11.029
46. Mensink, M.A., Frijlink, H.W., van der Voort Maarschalk, K., Hinrichs, W.L.J.J.: Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr. Polym. 134, 418–428 (2015). https://doi.org/10.1016/j.carbpol.2015.08.022
47. Dantas, A., Verruck, S., Balthazar, C.F., Esmerino, E.A., Guimarães, J.T., Rocha, R.S., Pimentel, T.C., Cruz, A.G. da, Prudencio, E.S.: Inovaçôes no Desenvolvimento de Derivados Lácteos Probióticos, Prebióticos e Simbióticos. In: Cruz, A.G. da, Prudencio, E.S., Esmerino, E.A., Pimentel, T.C., Zacarchenco, P.B., Alves, A.T.S. e, and Leila Maria Spadoti (eds.) Inovaçôes e Avanços em Ciência e Tecnologia de Leite e Derivados. pp. 215–236. Editora Setembro, São Paulo, SP (2019).
48. Debon, J., Prudêncio, E.S., Petrus, J.C.C., Fritzen-Freire, C.B., Müller, C.M.O., Amboni, R.D. de M.C., Vieira, C.R.W.: Storage stability of prebiotic fermented milk obtained from permeate resulting of the microfiltration process. LWT - Food Sci. Technol. 47, 96–102 (2012). https://doi.org/https://doi.org/10.1016/j.lwt.2011.12.029
49. Guimarães, J.T., Silva, E.K., Costa, A.L.R., Cunha, R.L., Freitas, M.Q., Meireles, M.A.A., Cruz, A.G.: Manufacturing a prebiotic whey beverage exploring the influence of degree of inulin polymerization. Food Hydrocoll. 77, 787–795 (2018). https://ZZdoi.orgZhttps:ZZdoi.orgZ10.1016Zj.foodhyd.2017.11.021
50. Balthazar, C.F., Conte Júnior, C.A., Moraes, J., Costa, M.P., Raices, R.S.L., Franco, R.M., Cruz, A.G., Silva, A.C.O.: Physicochemical evaluation of sheep milk yogurts containing different levels of inulin. J. Dairy Sci. 99, 4160–4168 (2016). https://ZZdoi.orgZhttps:ZZdoi.orgZ10.3168Zjds.2015-10072
51. Crispín-Isidro, G., Lobato-Calleros, C., Espinosa-Andrews, H., Alvarez-Ramirez, J., Vernon-Carter, E.J.: Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt. LWT - Food Sci. Technol. 62, 438–444 (2015). https://doi.org/https://doi.org/10.1016/j.lwt.2014.06.042
52. Kip, P., Meyer, D., Jellema, R.H.: Inulins improve sensoric and textural properties of low-fat yoghurts. Int. Dairy J. 16, 1098–1103 (2006). https://doi.org/10.1016/J.IDAIRYJ.2005.10.011
53. àGuven, M., Yasar, K., Karaca, O.B., Hayaloglu, A.A.,: The effect of inulin as a fat replacer on the quality of set-type low-fat yogurt manufacture - GUVEN - 2005 - International Journal of Dairy Technology - Wiley Online Library. Int. J. Dairy Technol. 58, 180–184 (2005). https://doi.org/10.1111/j.1471-0307.2005.00210.x
54. Aryana, K.J., Plauche, S., Rao, R.M., McGrew, P., Shah, N.P.: Fat-free plain yogurt manufactured with inulins of various chain lengths and Lactobacillus acidophilus. J. Food Sci. 72, M79-84 (2007). https://doi.org/10.1111/j.1750-3841.2007.00302.x
55. àPaseephol, T., Small, D.M., Sherkat, F.,: Rheology and texture of set yogurt as affected by inulin addition. J. Texture Stud. 617–634 (2008). https://doi.org/10.1111/j.1745-4603.2008.00161.x
56. Cruz, A.G., Cavalcanti, R.N., Guerreiro, L.M.R., Sant’Ana, A.S., Nogueira, L.C., Oliveira, C.A.F., Deliza, R., Cunha, R.L., Faria, J.A.F., Bolini, H.M.A.: Developing a prebiotic yogurt: rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. J. Food Eng. 114, 323–330 (2013). https://doi.org/https://doi.org/10.1016/j.jfoodeng.2012.08.018
57. Sanz, T., Salvador, A., Jiménez, A., Fiszman, S.M.: Yogurt enrichment with functional asparagus fibre. Effect of fibre extraction method on rheological properties, colour, and sensory acceptance. Eur. Food Res. Technol. 227, 1515–1521 (2008). https://doi.org/10.1007/s00217-008-0874-2
58. àStafollo, M.D., Bertola, N., Martino, M., Bevilacqua, A.,: Influence of dietary fiber addition on sensory and rheological properties of yogurt. Int. Dairy J. 14, 263–268 (2004). https://doi.org/https://doi.org/10.1016/j.idairyj.2003.08.004
59. Balthazar, C.F., Silva, H.L.A., Cavalcanti, R.N., Esmerino, E.A., Cappato, L.P., Abud, Y.K.D., Moraes, J., Andrade, M.M., Freitas, M.Q., Sant’Anna, C., Raices, R.S.L., Silva, M.C., Cruz, A.G.: Prebiotics addition in sheep milk ice cream: A rheological, microstructural and sensory study. J. Funct. Foods. 35, 564–573 (2017). https://doi.org/10.1016/j.jff.2017.06.004
60. Akbari, M., Eskandari, M.H., Niakosari, M., Bedeltavana, A.: The effect of inulin on the physicochemical properties and sensory attributes of low-fat ice cream. Int. Dairy J. 57, 52–55 (2016). https://doi.org/10.1016/J.IDAIRYJ.2016.02.040
61. Soukoulis, C., Lebesi, D., Tzia, C.: Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chem. 115, 665–671 (2009). https://doi.org/10.1016/J.FOODCHEM.2008.12.070
62. O’Connor, T.P., O’Brien, N.M.: Butter and other milk fat products. Fat replacers. Elsevier Ltd, Oxford, UK (2011).
63. Fadaei, V., Poursharif, K., Daneshi, M., Honarvar, M.: Advances in crop science and technology. OMICS International (2013).
64. Meyer, D., Bayarri, S., Tárrega, A., Costell, E.: Inulin as texture modifier in dairy products. Food Hydrocoll. 25, 1881–1890 (2011). https://doi.org/10.1016/J.FOODHYD.2011.04.012
65. Bot, A., Erle, U., Vreeker, R., Agterof, W.G..: Influence of crystallisation conditions on the large deformation rheology of inulin gels. Food Hydrocoll. 18, 547–556 (2004). https://doi.org/10.1016/J.FOODHYD.2003.09.003
66. Koca, N., Metin, M.: Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. Int. Dairy J. 14, 365–373 (2004). https://doi.org/10.1016/J.IDAIRYJ.2003.08.006
67. Wadhwani, R., Martini, S., Walsh, M.K., Ward, R.E., Mclellan, M.R.: Investigating the strategies to improve the quality of low-fat mozzarella and cheddar cheeses. (2011).
68. Salvatore, E., Pes, M., Mazzarello, V., Pirisi, A.: Replacement of fat with long-chain inulin in a fresh cheese made from caprine milk. Int. Dairy J. 34, 1–5 (2014). https://doi.org/10.1016/J.IDAIRYJ.2013.07.007
69. Balthazar, C.F., Silva, H.L.A., Celeguini, R.M.S., Santos, R., Pastore, G.M., Junior, C.A.C., Freitas, M.Q., Nogueira, L.C., Silva, M.C., Cruz, A.G.: Effect of galactooligosaccharide addition on the physical, optical, and sensory acceptance of vanilla ice cream. J. Dairy Sci. 98, 4266–72 (2015). https://doi.org/10.3168/jds.2014-9018
70. Sangwan, V., Tomar, S.K., Singh, R.R.B., Singh, A.K., Ali, B.: Galactooligosaccharides: novel components of designer foods. J. Food Sci. 76, R103–R111 (2011). https://doi.org/10.1111/j.1750-3841.2011.02131.x
71. Čurda, L., Rudolfová, J., Štětina, J., Dryák, B.: Dried buttermilk containing galactooligosaccharides—process layout and its verification. J. Food Eng. 77, 468–471 (2006). https://doi.org/10.1016/J.JFOODENG.2005.07.016
72. Mumtaz, S., - Ur - Rehman, S., Huma, N., Jamil, A., Nawaz, H.: Xylooligosaccharide enriched yoghurt: physicochemical and sensory evaluation. Pakistan J. Nutr. 7, 566–569 (2008). https://doi.org/10.3923/pjn.2008.566.569
73. Mumtaz, S., Rehman, S.-, Huma, N., Jamil, A.: Effect of xylooligosaccharide enriched yogurt on serum profile in Albino rats. Pakistan J. Nutr. 8, 1756–1759 (2009). https://doi.org/10.3923/pjn.2009.1756.1759
74. Ferrão, L.L., Ferreira, M.V.S., Cavalcanti, R.N., Carvalho, A.F.A., Pimentel, T.C., Silva, H.L.A., Silva, R., Esmerino, E.A., Neto, R.P.C., Tavares, M.I.B., Freitas, M.Q., Menezes, J.C.V., Cabral, L.M., Moraes, J., Silva, M.C., Mathias, S.P., Raices, R.S.L., Pastore, G.M., Cruz, A.G.: The xylooligosaccharide addition and sodium reduction in requeijão cremoso processed cheese. Food Res. Int. 107, 137–147 (2018). https://doi.org/10.1016/j.foodres.2018.02.018
75. Collado, M.C., Vinderola, G., Salminen, S.: Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Benef. Microbes. 10, 711–719 (2019). https://ZZdoi.orgZ10.3920ZBM2019.0015
76. Shanahan, F., Collins, S.M.: Pharmabiotic manipulation of the microbiota in gastrointestinal disorders, from rationale to reality. Gastroenterol. Clin. North Am. 39, 721–726 (2010). https://doi.org/10.1016/j.gtc.2010.08.006
77. Ferreira, C.L.L.F.: Benefícios das culturas lácticas probióticas. In: Oliveira, M. (ed.) Tecnologia de Produtos Lácteos Funcionais. pp. 213–234. Atheneu, Sao Paulo, SP (2009).
78. Bengmark, S., García De Lorenzo, A., Culebras, J.M.: Use of pro-, pre- and synbiotics in the ICU - Future options, https://www.scopus.com/record/display.uri?eid=2-s2.00035708755&origin=inward&txGid=e368c4c3de9a19ae798f4982257aca25, (2001).
79. Ritchie, M.L., Romanuk, T.N.: A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One. 7, e34938 (2012). https://ZZdoi.orgZ10.1371Z journal.pone.0034938
80. Chauhan, S. V., Chorawala, M.R.: PROBIOTICS, PREBIOTICS AND SYNBIOTICS. Int. J. Pharm. Sci. Res. 3, (2014). https://ZZdoi.orgZ10.13040ZIJPSR.0975-8232.3(3).711-26
81. Shafi, A., Farooq, U., Akram, K., Hayat, Z., Murtaza, M.A.: Prevention and control of diseases by use of pro- and prebiotics (synbiotics). Food Rev. Int. 30, 291–316 (2014). https://ZZdoi.orgZ10.1080Z87559129.2014.929142
82. FAO/WHO: Probiotics in food: Health and nutritional properties and guidelines for evaluation. Food and Agriculture Organization of the United Nations/World Health Organization. Food Nutr. Pap. 85, 413–426 (2006). https://ZZdoi.orgZ10.1201Z9781420009613.ch16
83. Wang, S., Zhu, H., Lu, C., Kang, Z., Luo, Y., Feng, L., Lu, X.: Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals. J. Dairy Sci. 95, 4813–4822 (2012). https://ZZdoi.orgZ10.3168ZJDS.2012-5426
84. Chen, Y.-P., Hsu, C.-A., Hung, W.-T., Chen, M.-J.: Effects of Lactobacillus paracasei 01 fermented milk beverage on protection of intestinal epithelial cell in vitro. J. Sci. Food Agric. 96, 2154–2160 (2016). https://doi.org/10.1002/jsfa.7331
85. Oh, N.S., Lee, H.A., Myung, J.H., Lee, J.Y., Joung, J.Y., Shin, Y.K., Baick, S.C.: Effect of different commercial oligosaccharides on the fermentation properties in Kefir during fermentation. Korean J. Food Sci. Anim. Resour. 33, 325–330 (2013). https://ZZdoi.orgZ10.5851Zkosfa.2013.33.3.325
86. Valencia, M.S., Salgado, S.M., Andrade, S.A.C., Padilha, V.M., Livera, A.V.S., Stamford, T.L.M.: Development of creamy milk chocolate dessert added with fructo-oligosaccharide and Lactobacillus paracasei subsp paracasei LBC 81. Lwt-Food Sci. Technol. 69, 104–109 (2016). https://doi.org/10.1016/). lwt.2016.01.039
87. Barbosa, I.C., Oliveira, M.E.G., Madruga, M.S., Gullon, B., Pacheco, M.T.B., Gomes, A.M.P., Batista, A.S.M., Pintado, M.M.E., Souza, E.L., Queiroga, R.C.R.E., Gullón, B., Pacheco, M.T.B., Gomes, A.M.P., Batista, A.S.M., Pintado, M.M.E., Souza, E.L., Queiroga, R.C.R.E.: Influence of the addition of Lactobacillus acidophilus La-05, Bifidobacterium animalis subsp lactis Bb-12 and inulin on the technological, physicochemical, microbiological and sensory features of creamy goat cheese. Food Funct. 7, 4356–4371 (2016). https://doi.org/10.1039/c6fo00657d
88. Delavari, M., Pourahmad, R., Sokutifar, R.: Production of low fat synbiotic yogurt containing Lactobacillus plantarum and inulin. 8, 17–24 (2014).
89. Shaghaghi, M., Pourahmad, R., Adeli, H.R.M.: Synbiotic yogurt production by using prebiotic compounds and probiotic lactobacilli. Int. Res. J. Appl. Basic Sci. 5, 839–846 (2013).
90. Padilha, M., Villarreal Morales, M.L., Vieira, A.D.S., Costa, M.G.M., Saad, S.M.I.: A prebiotic mixture improved Lactobacillus acidophilus and Bifidobacterium animalis gastrointestinal in vitro resistance in petit-suisse. Food Funct. 7, 2312–2319 (2016). https://doi.org/10.1039/C5FO01592H
91. Cardarelli, H.R., Saad, S.M.I., Gibson, G.R., Vulevic, J.: Functional petit-suisse cheese: Measure of the prebiotic effect. Anaerobe. 13, 200–207 (2007). https://doi.org/10.1016/j.anaerobe.2007.05.003
92. Martinez, R.C.R., Staliano, C.D., Vieira, A.D.S., Villarreal, M.L.M., Todorov, S.D., Saad, S.M.I., Franco, B.D.G. de M.: Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subspp. sakei 2a in a potentially synbiotic cheese spread. Food Microbiol. 48, 143–152 (2015). https://doi.org/10.1016/J.FM.2014.12.010
93. Kinik, O., Kesenkas, H., Ergonul, P.G., Akan, E., Kınık, Ö., Kesenkaş, H., Günç Ergönül, P., Akan, E.: The effect of using pro and prebiotics on the aromatic compounds, textural and sensorial properties of synbi-otic goat cheese. Mljekarstvo. 67, 71–85 (2017). https://doi.org/10.15567/mljekarstvo.2017.0108
94. Beltrao, F.A.S., de Moura, C.V.R., Madruga, M.S., de Andrade, A.E.B.: Evaluation of the fatty acid profile of synbiotic chevrotin cheese. J. Candido Tostes Dairy Inst. 72, 11–18 (2017). https://doi.org/10.14295/2238-6416.v72i1.538
95. Munoz, I. de B., Machado Canella, M.H., Verruck, S., Olivera Muller, C.M., de Liz, G.R., Castanho Amboni, R.D. de M., Prudencio, E.S., Canella, M.H.M., Verruck, S., Muller, C.M.O., Liz, G.R. de, Amboni, R.D. de M.C., Prudencio, E.S.: Potential of Milk freeze concentration for the production of functional fresh cheeses. Adv. J. Food Sci. Technol. 13, 196–209 (2017). https://doi.org/10.19026/ajfst.13.5069
96. de Almeida, J. dos S.O., Dias, C.O., Pinto, S.S., Pereira, L.C., Verruck, S., Fritzen-Freire, C.B., Amante, E.R., Prudêncio, E.S., Amboni, R.D.M.C., Almeida, J. dos S.O. de, Dias, C.O., Pinto, S.S., Pereira, L.C., Verruck, S., Fritzen-Freire, C.B., Amante, E.R., Prudêncio, E.S., Amboni, R.D.M.C.: Probiotic Mascarpone-type cheese: Characterisation and cell viability during storage and simulated gastrointestinal conditions. Int. J. Dairy Technol. 71, 195–203 (2018). https://doi.org/10.1111/1471-0307.12457
97. Pinto, S.S., Cavalcante, B.D., Verruck, S., Alves, L.F., Prudêncio, E.S., Amboni, R.D.: Effect of the incorporation of Bifidobacterium BB-12 microencapsulated with sweet whey and inulin on the properties of Greek-style yogurt. J. Food Sci. Technol. 54, 2804–2813 (2017). https://doi.org/10.1007/s13197-017-2717-2
98. Costa, M.P., Frasao, B.S., Silva, A.C.O., Freitas, M.Q., Franco, R.M., Conte-Junior, C.A.: Cupuassu (Theobromagrandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts. J. Dairy Sci. 98, 5995–6003 (2015). https://doi.org/10.3168/jds.2015-9738
99. do Espírito Santo, A.P., Perego, P., Converti, A., Oliveira, M.N.: Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Sci. Technol. 47, 393–399 (2012). https://doi.org/https://doi.org/10.1016/j.lwt.2012.01.038
100. Ehsani, A., Banihabib, E.K., Hashemi, M., Saravani, M., Yarahmadi, E.: Evaluation of Various Properties of Synbiotic Yoghurt of Buffalo Milk. J. Food Process. Preserv. 40, 1466–1473 (2016). https://doi.org/10.1111/jfpp.12732
101. Silveira, E.O. da, Lopes Neto, J.H.J.H., Silva, L.A. da, Raposo, A.E.S., Magnani, M., Cardarelli, H.R.H.R.: The effects of inulin combined with oligofructose and goat cheese whey on the physicochemical properties and sensory acceptance of a probiotic chocolate goat dairy beverage. LWT – Food Sci. Technol. 62, 445–451 (2015). https://doi.org/ https://doi.org/10.1016/j.lwt.2014.09.056
102. Fornelli, A.R., Bandiera, N.S., Costa, M.D., de Souza, C.H.B., de Santana, E.H.W., Sivieri, K., Aragon-Alegro, L.C.: Effect of inulin and oligofructose on the physicochemical, microbiological and sensory characteristics of synbiotic dairy beverages. Semin. Agrar. 35, 3099–3111 (2015). https://doi.org/10.5433/1679-0359.2014v35n6p3099
103. de Castro, F.P., Cunha, T.M., Ogliari, P.J., Teófilo, R.F., Ferreira, M.M.C., Prudêncio, E.S.: Influence of different content of cheese whey and oligofructose on the properties of fermented lactic beverages: Study using response surface methodology. LWT - Food Sci. Technol. 42, 993–997 (2009). https://doi.org/ https://doi.org/10.1016/j.lwt.2008.12.010
104. Villalva, F.J., Cravero Bruneri, A.P., Vinderola, G., Goncalvez De Oliveira, E., Paz, N.F., Ramon, A.N.: Formulation of a peach ice cream as potential synbiotic food. Food Sci. Technol. 37, 456–461 (2017). https://doi.org/10.1590/1678-457x.19716
105. Noori, F., Ebrahimi, M.T., Jafari, P.: Growth Optimization of Lactobacillus plantarum T5jq301796.1, an Iranian Indigenous Probiotic in Lab Scale Fermenter. Appl. Food Biotechnol. 3, 188–193 (2016).
106. Fragoso, M., Perez-Chabela, M.L., Hernandez-Alcantara, A.M., Escalona-Buendia, H.B., Pintor, A., Totosaus, A.: Sensory, melting and textural properties of fat-reduced ice cream inoculated with thermotolerant lactic acid bacteria. Carpathian J. Food Sci. Technol. 8, 11–21 (2016).
107. Nagendra, R., Viswanatha, S., Kumar, S.A., Murthy, B.K., Rao, S.V.: Effect of feeding milk formula containing lactulose to infants on faecal bifidobacterial flora. Nutr. Res. 15, 15–24 (1995). https://doi.org/10.1016/0271-5317(95)91649-W
108. Nagendra, R., Baskaran, M. V., Rao, S.V.: Shelf-life of spray-dried infant formula supplemented with lactulose. J. Food Process. Preserv. 19, 303–315 (1995). https://doi.org/10.1111/j.1745-4549.1995.tb00296.x
109. Kokke, F.T.M., Scholtens, P.A.M.J., Alles, M.S., Decates, T.S., Fiselier, T.J.W., Tolboom, J.J.M., Kimpen, J.L.L., Benninga, M.A.: A dietary fiber mixture versus lactulose in the treatment of childhood constipation: a double-blind randomized controlled trial. J. Pediatr. Gastroenterol. Nutr. 47, 592–7 (2008).
110. Özer, D., Akin, S., Özer, B.: Effect of Inulin and Lactulose on Survival of Lactobacillus AcidophilusLA-5 and Bifidobacterium Bifidum BB-02 in Acidophilus-Bifidus Yoghurt. Food Sci. Technol. Int. 11, 19–24 (2005). https://ZZdoi.orgZ10.1177Z1082013205051275
111. Martínez-Villaluenga, C., Frías, J., Gómez, R., Vidal-Valverde, C.: Influence of addition of raffinose family oligosaccharides on probiotic survival in fermented milk during refrigerated storage. Int. Dairy J. 16, 768-774 (2006). https://ZZdoi.orgZ10.1016ZJ.IDAIRYJ.2005.08.002
112. Ben, X.-M., Li, J., Feng, Z.-T., Shi, S.-Y., Lu, Y.-D., Chen, R., Zhou, X.-Y.: Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World J. Gastroenterol. 14, 6564–8 (2008).
113. Martinez-Gutierrez, F., Ratering, S., Juarez-Flores, B., Godinez-Hernandez, C., Geissler-Plaum, R., Prell, F., Zorn, H., Czermak, P., Schnell, S.: Potential use of Agave salmiana as a prebiotic that stimulates the growth of probiotic bacteria. LWT-Food Sci. Technol. 84, 151–159 (2017). https://doi.org/10.1016/j.lwt2017.05.044
1 *Corresponding author: Adriano.cruz@ifrj.edu.br