Читать книгу Functional Foods - Группа авторов - Страница 50

References

Оглавление

1. Poli, A., Barbagallo, C.M., Cicero, A.F.G., Corsini, A., Manzato, E., Trimarco, B., Bernini, F., Visioli, F., Canzone, G., Crescini, C., de Kreutzenberg, S., Ferrara, N., Gambacciani, M., Ghiselli, A., Lubrano, C., Marelli, G., Marrocco, W., Montemurro, V., Parretti, D., Pedretti, R., Perticone, F., Stella, R. & Marangoni, F., “Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper”. Pharmacol. Res., 134, 51–60, 2018.

2. Word Health Organization (WHO), Word Health Organization global strategy on diet, physical activity and health, http://www.scrivenerpublishing.com/guidelines.php, 2004.

3. Reis, F. S., Martins, A., Vasconcelos, M. H., Morales, P. & Ferreira, I. C. F. R., “Functional foods based on extracts or compounds derived from mushrooms”. Trends Food Sci. Technol,. 66, 48–62, 2017.

4. Krystallis, A., Maglaras, G. & Mamalis, S., “Motivations and cognitive structures of consumers in their purchasing of functional foods”. Food Qual. Prefer., 19, 525–538, 2008.

5. Szakály, Z., Kovács, S., Pető, K., Huszka, P. & Kiss, M., “A modified model of the willingness to pay for functional foods”. Appetite, 138, 94–101, 2019.

6. Jasák, H. Ö., Funkcionális élelmiszerek fogyasztását befolyásoló attitűdök vizsgálata (Analyses of attitudes that affect the consumption of functional foods). J. Cent. Eur. Green Innov., 3, 95–112, 2015.

7. Huggett, A. C. & Schilter, B., “Research needs for establishing the safety of functional foods”. Nutr. Rev., 54, S143–S148, 1996.

8. Charalampopoulos, D., Wang, R., Pandiella, S. S. & Webb, C., “Application of cereals and cereal components in functional foods: A review”. Int. J. Food Microbiol., 79, 131–141, 2002.

9. Sanders, M. E., “Overview of functional foods: emphasis on probiotic bacteria”. Int. Dairy J., 8, 341–347, 1998.

10. Kwak, N. S. & Jukes, D. J., “Functional foods. Part 1: the development of a regulatory concept”. Food Control., 12, 99–107, 2001.

11. Dalle Zotte, A. & Szendro, Z., “The role of rabbit meat as functional food”. Meat Sci., 88, 319–331, 2011.

12. Tapsell, L. “Functional foods: an Australian perspective”. Nutr. Diet. 65, S23-S26 2008.

13. Verschuren, P. M., “Functional foods: scientific and global perspectives”. Br. J. Nutr., 88, S125–S130, 2002.

14. Zhang, W., Xiao, S., Samaraweera, H., Lee, E. J. & Ahn, D. U., “Improving functional value of meat products”. Meat Sci., 86, 15–31, 2010.

15. Arai, S., “Studies on functional foods in Japan-state of the art”. Biosci. Biotechnol. Biochem., 60, 9–15, 1996.

16. Decker, E. A. & Park, Y., “Healthier meat products as functional foods”. Meat Sci., 86, 49–55, 2010.

17. Fogliano, V. & Vitaglione, P., “Functional foods: planning and development”. Mol. Nutr. Food Res., 49, 256–262, 2005.

18. Bigliardi, B. & Galati, F., “Innovation trends in the food industry: the case of functional foods”. Trends Food Sci. Technol., 31, 118–129, 2013.

19. Domínguez Díaz, L., Fernández-Ruiz, V. & Cámara, M., An international regulatory review of food health-related claims in functional food products labeling. J. Funct. Foods, 68, 103896, 2020.

20. Grajek, W., Olejnik, A. & Sip, A., Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim. Pol., 52, 665–671, 2005.

21. Al-Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M. & Hassan, F. A., Prebiotics as functional foods: a review. J. Funct. Foods, 5, 1542–1553, 2013.

22. Ötles, S. & Cagindi, Ö., Cereal based functional foods and nutraceuticals. Acta Sci. Pol. Technol. Aliment., 5, 107–112, 2006.

23. Slavin, J. L., Mechanisms for the impact of whole grain foods on cancer risk. J. Am. Coll. Nutr., 19, 300S-307S, 2000.

24. Liu, R. H., Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 78, 517S-520S, 2003.

25. Liu, R. H., Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., 134, 3479S-3485S, 2004.

26. Liu, R. H., Whole grain phytochemicals and health. J. Cereal Sci., 46, 207–219, 2007.

27. Anderson, J. W., Whole grains and coronary heart disease: the whole kernel of truth. Am. J. Clin. Nutr., 80, 1459–1460, 2004.

28. Seal, C. J., Whole grains and CVD risk. Proc. Nutr. Soc., 65, 24–34, 2006.

29. De Munter, J. S. L., Hu, F. B., Spiegelman, D., Franz, M. & Van Dam, R. M., Whole grain, bran, and germ intake and risk of type 2 diabetes: A prospective cohort study and systematic review. PLoS Med., 4, 1385–1395, 2007.

30. Adlercreutz, H., Lignans and human health. Crit. Rev. Clin. Lab. Sci., 44, 483–525, 2007.

31. Ye, E. Q., Chacko, S. A., Chou, E. L., Kugizaki, M. & Liu, S., Greater wholegrain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J. Nutr., 142, 1304–1313, 2012.

32. Cho, S. S., Qi, L., George, C., Fahey, J. R. & Klurfeld, D. M., Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am. J. Clin. Nutr., 98, 594–619, 2013.

33. Bach Knudsen, K. E., Nørskov, N. P., Bolvig, A. K., Hedemann, M. S. & Laerke, H. N., Dietary fibers and associated phytochemicals in cereals. Mol. Nutr. Food Res., 61, 1600518, 2017.

34. Truswell, A. S., Cereal grains and coronary heart disease. Eur. J. Clin. Nutr., 56, 1–14, 2002.

35. Trowell, H., Ischemic heart disease and dietary fiber. Am. J. Clin. Nutr., 25, 926–932, 1972.

36. Southgate, D. A. T., The dietary fibre hypothesis: a historical perspective, in: Dietary Fibre — A Component of Food, T. F. Schweizer & C. A. Edwards (Eds.), pp. 3–20, Springer-Verlag, London, 1992.

37. Sidhu, J. S., Kabir, Y. & Huffman, F. G., Functional foods from cereal grains. Int. J. Food Prop., 10, 231–244, 2007.

38. Dendy, D. A. V. & Dobraszcyk, B. J., Cereals and Cereal Products: Technology and Chemistry, p. 430, Springer US, Gaithersburg, Maryland, 2001.

39. Dziki, D. & Laskowski, J., Wheat kernel physical properties and milling process. Acta Agrophysica, 6, 59–71, 2005.

40. Pomeranz, Y., Chemical composition of kernel structures, in: Wheat Chemistry and Technology Volume 1, Y Pomeranz (Ed.), pp. 91–158, American Association of Cereal Chemists, St. Paul, MN, 1988.

41. Cauvain, S. P., Bread Making: Improving Quality, p. 500, Woodhead Publishing, Cambridge, 2003.

42. Šramková, Z., Gregová, E. & Šturdík, E., Chemical composition and nutritional quality of wheat grain. Acta Chim. Slovaca, 2, 115–138, 2009.

43. Rebello, C. J., Greenway, F. L. & Finley, J. W., Whole grains and pulses: a comparison of the nutritional and health benefits. J. Agric. Food Chem., 7029–7049, 2014.

44. Patel, S., Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. J. Funct. Foods, 14, 255–269, 2015.

45. Belderok, B., Mesdag, H. & Donner, D. A., Bread-Making Quality of Wheat: A Century of Breeding in Europe, p. 416, Springer Science + Business Media Dordrecht, Netherlands, 2000.

46. Baublis, A. J., Lu, C., Clydesdale, F. M. & Decker, E. A., Potential of wheatbased breakfast cereals as a source of dietary antioxidants. J. Am. Coll. Nutr., 19, 308–311, 2000.

47. Das, A., Raychaudhuri, U. & Chakraborty, R., Cereal based functional food of Indian subcontinent: a review. J. Food Sci. Agric. Technol., 49, 665–672, 2012.

48. Anderson, J. W., Hanna, T. J., Peng, X. & Kryscio, R. J., Whole grain foods and heart disease risk. J. Am. Coll. Nutr., 19, 291S-299S, 2000.

49. Liu, J., Yu, L. L. & Wu, Y., Bioactive components and health beneficial properties of whole wheat foods. J. Agric. Food Chem., doi:10.1021/acs. jafc.0c00705, 2020.

50. Wijngaard, H. H. & Arendt, E. K., Buckwheat. Cereal Chem. J., 83, 391–401, 2006.

51. Dietrych-Szostak, D. & Oleszek, W., Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain. J. Agric. Food Chem., 47, 4384–4387, 1999.

52. Sun, T. & Ho, C. T., Antioxidant activities of buckwheat extracts. Food Chem., 90, 743–749, 2005.

53. Ikeda, K., Buckwheat: composition, chemistry, and processing. Adv. Food Nutr. Res., 44, 395–433, 2002.

54. Aufhammer, W., Pseudogetreidearten: Buchweizen, Reismelde, Amarant, p. 262, Verlag Eugen Ulmer, Stuttgart, 2000.

55. Pomeranz, Y., Buckwheat: structure, composition, and utilization. Crit. Rev. Food Sci. Nutr., 19, 213–258, 1983.

56. Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E. & Obendorf, R. L., Buckwheat seed milling fractions: description, macronutrient composition and dietary fibre. J. Cereal Sci., 33, 271–278, 2001.

57. Li, S.-Q. & Zhang, Q. H., Advances in the development of functional foods from buckwheat. Crit. Rev. Food Sci. Nutr., 41, 451–464, 2001.

58. Bonafaccia, G., Marocchini, M. & Kreft, I., Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem., 80, 9–15, 2003.

59. Krkošková, B. & Mrázová, Z., Prophylactic components of buckwheat. Food Res. Int., 38, 561–568, 2005.

60. Kawakami, A., Kayahara, H., Tadasa, K. & Ujihara, A., Isolation and taste improvement of tartary buckwheat protein by isoelectric precipitation. Nippon Shokuhin Kogyo Gakkaishi V., 41, 481–484, 1994.

61. Christa, K. & Soral-Śmietana, M., Buckwheat grains and buckwheat products - nutritional and prophylactic value of their components - a review. Czech Journal of Food Sciences, 26, 153–162, 2008.

62. Fernandes, C. G., Sonawane, S. K. & Arya, S. S., Cereal based functional beverages: A review. J. Microbiol. Biotechnol. Food Sci., 8, 914–919, 2018.

63. Ikeda, K., Sakaguchi, T., Kusano, T. & Yasumoto, K., Endogenous factors affecting protein digestibility in buckwheat. Cereal Chem. J., 68, 424–427, 1991.

64. Ikeda, K. & Asami, Y., Mechanical characteristics of buckwheat noodles. Fagopyrum, 17, 67–72, 2000.

65. Skerritt, J., H. Molecular comparison of alcohol-soluble wheat and buckwheat proteins. Cereal Chem. J., 63, 365–369, 1986.

66. Lu, L., Murphy, K. & Baik, B.-K., Genotypic variation in nutritional composition of buckwheat groats and husks. Cereal Chem. J., 90, 132–137, 2013.

67. Wei, Y.-M., Hu, X.-Z., Zhang, G.-Q. & Ouyang, S.-H., Studies on the amino acid and mineral content of buckwheat protein fractions. Nahrung/Food, 47, 114–116, 2003.

68. Stibilj, V., Kreft, I., Smrkolj, P. & Osvald, J., Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.) seeds by foliar fertilisation. Eur. Food Res. Technol., 219, 142–144, 2004.

69. Watanabe, M., Catechins as antioxidants from buckwheat (Fagopyrum escu-lentum Moench) groats. J. Agric. Food Chem., 46, 839–845, 1998.

70. Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J. & Vavreinova, S., Buckwheat - The source of antioxidant activity in functional foods. Food Res. Int., 35, 207–211, 2002.

71. Oomah, B. D. & Mazza, G., Flavonoids and antioxidative activities in buckwheat. J. Agric. Food Chem., 44, 1746–1750, 1996.

72. Kreft, S., Knapp, M. & Kreft, I., Extraction of rutin from buckwheat (Fagopyrum esculentum moench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem., 47, 4649–4652, 1999.

73. Zhang, Z. -L., Zhou, M. -L., Tang, Y., Li, F. -L., Tang, Y. -X., Shao, J. -R., Xue, W. -T. & Wu, Y. -M., Bioactive compounds in functional buckwheat food. Food Res. Int., 49, 389–395, 2012.

74. Giménezgiménez-Bastida, A. J. & Zieliński, H., Buckwheat as a functional food and its effects on health. J. Agric. Food Chem., 63, 7896–7913, 2015.

75. Liu, R. H., Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 78, 517S-520S, 2003.

76. D’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B. & Masella, R., Bioavailability of the polyphenols: status and controversies. Int. J. Mol. Sci., 11, 1321–1342, 2010.

77. Koehler, P. & Wieser, H., Chemistry of cereal grains, in: Handbook on Sourdough Biotechnology, M. Gobbetti & M. Gänzle (Eds.), pp. 11–45, Springer Science+Business Media, NewYork, 2013.

78. Biel, W., Jacyno, E. & Kawęcka, M., Chemical composition of hulled, dehulled and naked oat grains. S. Afr. J. Anim. Sci., 44, 189–197, 2014.

79. Webster, F. H. & Wood, P. J., Oats - chemistry and technology, 2nd edition, p. 433, American Association of Cereal Chemist International, St. Paul, Minnesota, USA, 2011.

80. Brand, T. S., Cruywagen, C. W., Brandt, D. A., Viljoen, M. & Burger, W. W., Variation in the chemical composition, physical characteristics and energy values of cereal grains produced in the Western Cape area of South Africa. S. Afr. J. Anim. Sci., 33, 117–126, 2003.

81. Givens, D. I., Davies, T. W. & Laverick, R. M., Effect of variety, nitrogen fertiliser and various agronomic factors on the nutritive value of husked and naked oats grain. Anim. Feed Sci. Technol., 113, 169–181, 2004.

82. Lásztity, R., Oat grain - A wonderful reservoir of natural nutrients and biologically active substances. Food Rev. Int., 14, 99–119, 1998.

83. Pomeranz, Y., Advances in cereal science and technology, 5th edition, p. 364, American Association of Cereal Chemists, 1982.

84. Welch, R., The oat crop-production and utilization, p. 584, Springer Science+Business Media, Netherlands, 1995.

85. Grundy, M. M. L., Quint, J., Rieder, A., Ballance, S., Dreiss, C. A., Cross, K. L., Gray, R., Bajka, B. H., Butterworth, P. J., Ellis, P. R. & Wilde, P. J., The impact of oat structure and B-glucan on in vitro lipid digestion. J. Funct. Foods, 38, 378–388, 2017.

86. Zhou, M., Robards, K., Glennie-Holmes, M. & Helliwell, S., Structure and pasting properties of oat starch. Cereal Chem. J., 75, 273–281, 1998.

87. Decker, E. A., Rose, D. J. & Stewart, D., Processing of oats and the impact of processing operations on nutrition and health benefits. Br. J. Nutr., 112, S58–S64, 2014.

88. Maurice, D. V., Jones, J. E., Hall, M. A., Castaldo, D. J., Whisenhunt, J. E. & McConnell, J. C., Chemical composition and nutritive value of naked oats (Avena nuda L.) in broiler diets. Poult. Sci., 64, 529–535, 1985.

89. Zarkadas, C. G., Yu, Z. & Burrows, V. D., Assessment of the protein quality of two new Canadian-developed oat cultivars by amino acid analysis. J. Agric. Food Chem., 43, 422–428, 1995.

90. Klose, C. & Arendt, E. K., Proteins in oats; their synthesis and changes during germination: a review. Crit. Rev. Food Sci. Nutr., 52, 629–639, 2012.

91. Shewry, P. R. & Halford, N. G., Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot., 53, 947–958, 2002.

92. Peterson, D. M., Malting oats: Effects on chemical composition of hull-less and hulled genotypes. Cereal Chem., 75, 230–234, 1998.

93. Zhou, M. X., Holmes, M. G., Robards, K. & Helliwell, S., Fatty acid composition of lipids of Australian oats. J. Cereal Sci., 28, 311–319, 1998.

94. Matz, S. A., Chemistry and technology of cereals as food and feed, 2nd edition, p. 752, Springer-Verlag US, NewYork, 1991.

95. Henry, R. J., A comparison of the non-starch carbohydrates in cereal grains. J. Sci. Food Agric., 36, 1243–1253, 1985.

96. Chen, J., He, J., Wildman, R. P., Reynolds, K., Streiffer, R. H. & Whelton, P. K., A randomized controlled trial of dietary fiber intake on serum lipids. Eur. J. Clin. Nutr., 60, 62–68, 2006.

97. Wood, P. J., Cereal β-glucans in diet and health. J. Cereal Sci., 46, 230–238, 2007.

98. Wang, H. C., Hung, C. H., Hsu, J. D., Yang, M. Y., Wang, S. J. & Wang, C. J., Inhibitory effect of whole oat on aberrant crypt foci formation and colon tumor growth in ICR and BALB/c mice. J. Cereal Sci., 53, 73–77, 2011.

99. Fincher, G. B. & Stone, B. A., Cell walls and their components in cereal grain technology. Adv. Cereal Sci. Technol., 8, 207–295, 1986.

100. Bhatty, R. S., Total and extractable β-glucan contents of oats and their relationship to viscosity. J. Cereal Sci., 15, 185–192, 1992.

101. Autio, K., Mylltmaki, O. & Malkki, Y., Flow properties of solutions of oat β-glucans. J. Food Sci., 52, 1364–1366, 1987.

102. Jaskari, J., Henriksson, K., Nieminen, A., Suortti, T., Salovaara, H. & Poutanen, K., Effect of hydrothermal and enzymic treatments on the viscous behavior of dry- and wet-milled oat brans. Cereal Chem., 72, 625–631, 1995.

103. Banks, W. & Greenwood, C. T., The fractionation of labortory-isolated cereal gereal starches using dimethyl sulphoxide. Starch - Stärke, 19, 394–398, 1967.

104. Sterna, V., Zute, S. & Brunava, L., Oat grain composition and its nutrition benefice. Agric. Agric. Sci. Procedia, 8, 252–256, 2016.

105. Brennan, C. S. & Cleary, L. J., The potential use of cereal (1→3,1→4)-β-d-glucans as functional food ingredients. J. Cereal Sci., 42, 1–13, 2005.

106. Pins, J. J. & Kaur, H., A review of the effects of barley β-glucan on cardiovascular and diabetic risk. Cereal Foods World, 51, 8–11, 2006.

107. Keenan, J. M., Goulson, M., Shamliyan, T., Knutson, N., Kolberg, L. & Curry, L., The effects of concentrated barley β-glucan on blood lipids in a population of hypercholesterolaemic men and women. Br. J. Nutr., 97, 1162–1168, 2007.

108. Wood, P. J., Oat and rye β-glucan: properties and function. Cereal Chem., 87, 315–330, 2010.

109. Izydorczyk, M. S., McMillan, T., Bazin, S., Kletke, J., Dushnicky, L., Dexter, J., Chepurna, A. & Rossnagel, B., Milling of Canadian oats and barley for functional food ingredients: Oat bran and barley fibre-rich fractions. Can. J. Plant Sci., 94, 573–586, 2014.

110. Badr, A., M, K., Sch, R., Rabey, H. El, Effgen, S., Ibrahim, H. H., Pozzi, C., Rohde, W. & Salamini, F., On the origin and domestication history of barley (Hordeum vulgare). Mol. Biol. Evol., 17, 499–510, 2000.

111. Idehen, E., Tang, Y. & Sang, S., Bioactive phytochemicals in barley. J. Food Drug Anal., 25, 148–161, 2017.

112. Yangcheng, H., Gong, L., Zhang, Y. & Jane, J. L., Pysicochemical properties of Tibetan hull-less barley starch. Carbohydr. Polym., 137, 525–531, 2016.

113. Yu, W., Tan, X., Zou, W., Hu, Z., Fox, G. P., Gidley, M. J. & Gilbert, R. G., Relationships between protein content, starch molecular structure and grain size in barley. Carbohydr. Polym., 155, 271–279, 2017.

114. Schulte, D., Close, T. J., Graner, A., Langridge, P., Matsumoto, T., Muehlbauer, G., Sato, K., Schulman, A. H., Waugh, R., Wise, R. P. & Stein, N., The international barley sequencing consortium - at the threshold of efficient access to the barley genome. Plant Physiol., 149, 142–147, 2009.

115. Baik, B. K. & Ullrich, S. E., Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci., 48, 233–242, 2008.

116. Bergh, M. O., Razdan, A. & Åman, P., Nutritional influence of broiler chicken diets based on covered normal, waxy and high amylose barleys with or without enzyme supplementation. Anim. Feed Sci. Technol., 78, 215–226, 1999.

117. Biel, W. & Jacyno, E., Chemical composition and nutritive value of spring hulled barley varieties. Bulg. J. Agric. Sci., 19, 721–727, 2013.

118. Sullivan, P., Arendt, E. & Gallagher, E., The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci. Technol., 29, 124–134, 2013.

119. Bhatty, R. S., Physicochemical properties of roller-milled barley bran and flour. Cereal Chem., 70, 397-402, 1993.

120. Jood, S. & Kalra, S., Chemical composition and nutritional characteristics of some hull less and hulled barley cultivars grown in India. Nahrung - Food, 45, 35–39, 2001.

121. Cook, A.H., Barley and malt: Biology, biochemistry, technology, p. 756, Academic Press, NewYork, 2013.

122. Zhang, G. & Li, C., Genetics and Improvement of Barley Malt Quality, p. 296, Springer Science+Business Media, Heidelberg, 2009.

123. Holopainen-Mantila, U., Composition and structure of barley (Hordeum vulgare L.) grain in relation to end uses, p. 7287, VTT Technological Research Centre of Finland Ltd Julkaisija-Utgivare-Publisher, Helsinki, Finland, 2015.

124. Evers, T. & Millar, S., Cereal grain structure and development: Some implications for quality. J. Cereal Sci., 36, 261–284, 2002.

125. Palmer, G. H., Ultrastructure of the cell walls of the transport pathway for gibberellic acid in barleyaleurone layer. J. Inst. Brew., 104, 137–142, 1998.

126. Pomeranz, Y., Structure and mineral composition of cereal aleurone cells as shown by scanning electron microscopy. Cereal Chem., 50, 504–511, 1973.

127. Fincher, G. B., Ferulic acid in barley cell walls: A fluorescence study. J. Inst. Brew., 82, 347–349, 1976.

128. Wang, L., Behr, S. R., Newman, R. K. & Newman, C. W., Comparative cholesterol-lowering effects of barley β-glucan and barley oil in golden Syrian hamsters. Nutr. Res., 17, 77–88, 1997.

129. Shewry, P. R., Barley: Genetics, biochemistry, molecular biology and biotechnology, p. 626, Oxford University Press, Wallingford, 1992.

130. MacGregor, A. W. & Bhatty, R. S., Barley: Chemistry and technology, p. 486, American Association of Cereal Chemist International, 1993.

131. Helm, C. V. & de Francisco, A., Chemical characterization of Brazilian hulless barley varieties, flour fractionation, and protein concentration. Sci. Agric., 61, 593–597, 2004.

132. Asare, E. K., Jaiswal, S., Maley, J., Båga, M., Sammynaiken, R., Rossnagel, B. G. & Chibbar, R. N., Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. J. Agric. Food Chem., 59, 4743–4754, 2011.

133. Wrigley, C., Encyclopedia of grain science, p. 1700, Academic Press, Oxford, UK, 2004.

134. Bhatty, R. S. & Rossnagel, B. G., Comparison of pearled and unpearled Canadian and Japanese barleys. Cereal Chem. J., 75, 15–21, 1998.

135. Salomonsson, A. C., Theander, O. & Westerlund, E., Chemical characterization of some Swedish cereal whole meal and bran fractions. Swedish J. Agric. Res., 14, 111–117, 1984.

136. Åman, P. & Newman, C. W., Chemical composition of some different types of barley grown in Montana, U.S.A. J. Cereal Sci., 4, 133–141, 1986.

137. Åman, P. & Graham, H., Analysis of total and insoluble mixed-linked (1→3),(1→4)-β-D-glucans in barley and oats. J. Agric. Food Chem., 35, 704–709, 1987.

138. Oscarsson, M., Andersson, R., Salomonsson, A. C. & Åman, P., Chemical composition of barley samples focusing on dietary fibre components. J. Cereal Sci., 24, 161–170, 1996.

139. Slavin, J., Jacobs, D. & Marquart, L., Whole-grain consumption and chronic disease: Protective mechanisms. Nutr. Cancer, 27, 14–21, 1997.

140. Li, J., Kaneko, T., Qin, L. Q., Wang, J. & Wang, Y., Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women. Nutrition, 19, 926–929, 2003.

141. Van Horn, L., Fiber, lipids, and coronary heart disease. Circulation, 95, 2701–2704, 1997.

142. Dongowski, G., Huth, M., Gebhardt, E. & Flamme, W., Dietary fiber-rich barley products beneficially affect the intestinal tract of rats. J. Nutr., 132, 3704–3714, 2002.

143. Finn, O. J., Molecular origins of cancer: Cancer immunology. N. Engl. J. Med., 358, 2704–2715, 2008.

144. Annapurna, A., Health benefits of barley. J. Pharm. Res. Heal. Care, 3, 22, 2011.

145. Bays, D. H., A new history of christianity in China, p. 241, Wiley-Blackwell, Oxford, UK, 2011.

146. Zhang, J. -X., Bergman, F., Hallmans, G., Johansson, G., Lundin, E., Stenling, R., Theander, O. & Westerlund, E., The influence of barley fibre on bile composition, gallstone formation, serum cholesterol and intestinal morphology in hamsters. J. Pathol. Microbiol. Immunol., 98, 568–574, 1990.

147. Hoang, M. H., Houng, S. J., Jun, H. J., Lee, J. H., Choi, J. W., Kim, S. H., Kim, Y. R. & Lee, S. J., Barley intake induces bile acid excretion by reduced expression of intestinal ASBT and NPC1L1 in C57BL/6J mice. J. Agric. Food Chem., 59, 6798–6805, 2011.

148. Behall, K. M., Scholfield, D. J. & Hallfrisch, J., Whole-grain diets reduce blood pressure in mildly hypercholesterolemic men and women. J. Am. Diet. Assoc., 106, 1445–1449, 2006.

149. Kanauchi, O., Fujiyama, Y., Kehchimitsuyama, A. Y., Ishii, T., Nakamura, T., Hitomi, Y., Agata, K., Saiki, T., Andoh, A., Toyonaga, A. & Bamba, T., Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers. Int. J. Mol. Med., 3, 175–179, 1999.

150. Tada, R., Ikeda, F., Aoki, K., Yoshikawa, M., Kato, Y., Adachi, Y., Tanioka, A., Ishibashi, K. -I., Tsubaki, K. & Ohno, N., Barley-derived β-D-glucan induces immunostimulation via a dectin-1-mediated pathway. Immunol. Lett., 123, 144–148, 2009.

151. Shahidi, F. & Zhong, Y., Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev., 39, 4067–4079, 2010.

152. Bartłomiej, S., Justyna, R. K. & Ewa, N., Bioactive compounds in cereal grains – occurrence, structure, technological significance and nutritional benefits – a review. Food Sci. Technol. Int., 18, 559–568, 2012.

153. Oomah, B. D., Flaxseed as a functional food source. J. Sci. Food Agric., 81, 889–894, 2001.

154. Berlung, D. R., Flax: New Uses and Demands, in Trends in New Crops and New Uses, J. Janick & A. Whipkey (Eds.), pp. 358–360, ASHS Press, Alexandria, VA, 2002.

155. Coşkuner, Y. & Karababa, E., Some physical properties of flaxseed (Linum usitatissimum L.). J. Food Eng., 78, 1067–1073, 2007.

156. Wang, B., Li, D., Wang, L. J., Huang, Z. G., Zhang, L., Xiao, D. C. & Mao, Z. H., Effect of moisture content on the physical properties of fibered flaxseed. Int. J. Food Eng., 3, 1–11, 2007.

157. Zhang, Z. S., Wang, L. J., Li, D., Jiao, S. S., Chen, X. D. & Mao, Z. H., Ultrasound-assisted extraction of oil from flaxseed. Sep. Purif. Technol., 62, 192–198, 2008.

158. Kajla, P., Sharma, A. & Sood, D. R., Flaxseed—a potential functional food source. J. Food Sci. Technol., 52, 1857–1871, 2015.

159. Oomah, B. D. & Mazza, G., Compositional changes during commercial processing of flaxseed. Ind. Crops Prod., 9, 29–37, 1998.

160. Singh, K. K., Mridula, D., Rehal, J. & Barnwal, P., Flaxseed: A potential source of food, feed and fiber. Crit. Rev. Food Sci. Nutr., 51, 210–222, 2011.

161. Singh, K. K., Jhamb, S. A. & Kumar, R., Effect of pretreatments on performance of screw pressing for flaxseed. J. Food Process Eng., 35, 543–556, 2012.

162. Thompson, L. U. & Cunnane, S. C., Flaxseed in human nutrition, 2nd edition, p. 458, AOCS Press, Toronto, Canada, 2003.

163. Bloedon, L. T. & Szapary, P. O., Flaxseed and cardiovascular risk. Nutr. Rev., 62, 18–27, 2004.

164. Green, A. G. & Marshall, D. R., Isolation of induced mutants in linseed (Linum usitatissimum) having reduced linolenic acid content. Euphytica, 33, 321–328, 1984.

165. Zhang, Z. S., Li, D., Wang, L. J., Ozkan, N., Chen, X. D., Mao, Z. H. & Yang, H. Z., Optimization of ethanol-water extraction of lignans from flaxseed. Sep. Purif. Technol., 57, 17–24, 2007.

166. Wu, M., Li, D., Wang, L. J., Zhou, Y. G., Brooks, M. S. L., Chen, X. D. & Mao, Z. H., Extrusion detoxification technique on flaxseed by uniform design optimization. Sep. Purif. Technol., 61, 51–59, 2008.

167. Green, A. G. & Marshall, D. R., Variation for oil quantity and quality in linseed (Linum usitatissimum). Aust. J. Agric. Res., 32, 599–607, 1981.

168. Carter, J. F., Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World., 38, 753–759, 1993.

169. Rubilar, M., Gutiérrez, C., Verdugo, M., Shene, C. & Sineiro, J., Flaxseed as a source of functional ingredients. J. Soil Sci. Plant Nutr., 10, 373–377, 2010.

170. Shim, Y. Y., Gui, B., Arnison, P. G., Wang, Y. & Reaney, M. J. T., Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends Food Sci. Tech., 38, 5–20, 2014.

171. Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K., Conformational analysis of cyclolinopeptides A and B. Tetrahedron, 58, 5135–5140, 2002.

172. Oomah, B. D., Kenaschuk, E. O. & Mazza, G., Phenolic acids in flaxseed. J. Agric. Food Chem., 43, 2016–2019, 1995.

173. Chen, J., Mark Stavro, P. & Thompson, L. U., Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr. Cancer, 43, 187–192, 2002.

174. Visentainer, J. V., De Souza, N. E., Makoto, M., Hayashi, C. & Franco, M. R. B., Influence of diets enriched with flaxseed oil on the α-linolenic, eicosapentaenoic and docosahexaenoic fatty acid in Nile tilapia (Oreochromis niloticus). Food Chem., 90, 557–560, 2005.

175. Cui, S. W., Polysaccharide gums from agricultural products: Processing, structures and products, p. 261, Technomic Publishing Company, Inc., Lancaster, PA, USA, 2001.

176. Guo, Q., Cui, S. W., Wang, Q., Goff, H. D. & Smith, A., Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocoll., 23, 1542–1547, 2009.

177. Masood, R. & Miraftab, M., Psyllium: Current and future applications, in Medical and Healthcare Textiles, S. C. Anand, J. F. Kennedy, M. Miraftab & S. Rajendran (Eds.), pp. 244–253, Woodhead Publishing, Cambridge, UK, 2010.

178. Guo, Q., Cui, S. W., Wang, Q. & Christopher Young, J., Fractionation and physicochemical characterization of psyllium gum. Carbohydr. Polym., 73, 35–43, 2008.

179. Mishra, A. & Bajpai, M., Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. J. Hazard. Mater., 118, 213–217, 2005.

180. Ahmadi, R., Kalbasi-Ashtari, A., Oromiehie, A., Yarmand, M. S. & Jahandideh, F., Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J. Food Eng., 109, 745–751, 2012.

181. Singh, B., Psyllium as therapeutic and drug delivery agent. Int. J. Pharm., 334, 1–14, 2007.

182. Bemiller, J. N. & Whister, R. L., Carbohydrate, in Food Chemistry, O. R. Fennema (Ed.), pp. 157–223, Marcel Dekker, NewYork, 1996.

183. Fang, C., Dietary psyllium reverses hypercholesterolemic effect of trans fatty acids in rats. Nutr. Res., 20, 695–705, 2000.

184. Romero, A. L., West, K. L., Zern, T. & Fernandez, M. L., The seeds from Plantago ovata lower plasma lipids by altering hepatic and bile acid metabolism in guinea pigs. J. Nutr., 132, 1194–1198, 2002.

185. Fischer, M. H., Yu, N., Gray, G. R., Ralph, J., Anderson, L. & Marlett, J. A., The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr. Res., 339, 2009–2017, 2004.

186. Thakur, V. K. & Thakur, M. K., Recent trends in hydrogels based on psyllium polysaccharide: A review. J. Clean. Prod., 82, 1–15, 2014.

187. Bouchoucha, M., Faye, A., Savarieau, B. & Arsac, M., Effect of an oral bulking agent and a rectal laxative administered alone or in combination for the treatment of constipation. Gastroenterol. Clin. Biol., 28, 438–443, 2004.

188. Ramkumar, D. & Rao, S. S. C., Efficacy and safety of traditional medical therapies for chronic constipation: Systematic review. Am. J. Gastroenterol., 100(4), 936–971, 2005.

189. Washington, N., Harris, M., Mussellwhite, A. & Spiller, R. C., Moderation of lactulose-induced diarrhea by psyllium: Effects on motility and fermentation. Am. J. Clin. Nutr., 67, 317–321, 1998.

190. Fernández-Bañares, F., Hinojosa, J., Sánchez-Lombraña, J. L., Navarro, E., Martínez-Salmerón, J. F., García-Pugés, A., González-Huix, F., Riera, J., González-Lara, V., Domínguez-Abascal, F., Giné, J. J., Moles, J., Gomollón, F. & Gassull, M. A., Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Am. J. Gastroenterol., 94, 427–433, 1999.

191. Pittler, M. H. & Ernst, E., Dietary supplements for body-weight reduction: A systematic review. Am. J. Clin. Nutr., 79, 529–536, 2004.

192. Anderson, J. W., O’Neal, D. S., Riddell-Mason, S., Floore, T. L., Dillon, D. W. & Oeltgen, P. R., Postprandial serum glucose, insulin, and lipoprotein responses to high- and low-fiber diets. Metabolism, 44, 848–854, 1995.

193. Rodríguez-Morán, M., Guerrero-Romero, F. & Lazcano-Burciaga, G., Lipid-and glucose-lowering efficacy of Plantago psyllium in type II diabetes. J. Diabetes Complications, 12, 273–278, 1998.

194. Anderson, J. W., Allgood, L. D., Turner, J., Oeltgen, P. R. & Daggy, B. P., Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. Am. J. Clin. Nutr., 70, 466–473, 1999.

195. Anderson, J. W., Allgood, L. D., Lawrence, A., Altringer, L. A., Jerdack, G. R., Hengehold, D. A. & Morel, J. G., Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: Meta-analysis of 8 controlled trials. Am. J. Clin. Nutr., 71, 472–479, 2000.

196. Moreyra, A. E., Wilson, A. C. & Koraym, A., Effect of combining psyllium fiber with simvastatin in lowering cholesterol. Arch. Intern. Med., 165, 1161–1166, 2005.

197. Florholmen, J., Arvidsson-Lenner, R., Jorde, R. & Burhol, P. G., The Effect of metamucil on postprandial blood glucose and plasma gastric inhibitory peptide in insulin-dependent diabetics. Acta Med. Scand., 212, 237–240, 1982.

198. Fukagawa, N. K., Anderson, J. W., Hageman, G., Young, V. R. & Minaker, K. L., High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults. Am. J. Clin. Nutr., 52, 524–528, 1990.

199. Pastors, J. G., Blaisdell, P. W., Balm, T. K., Asplin, C. M. & Pohl, S. L., Psyllium fiber reduces rise in postprandial glucose and insulin concentrations in patients with non-insulin-dependent diabetes. Am. J. Clin. Nutr., 53, 1431–1435, 1991.

200. Gupta, R. R., Agrawal, C. G., Singh, G. P. & Ghatak, A., Lipid-lowering efficacy of psyllium hydrophilic mucilloid in non insulin dependent diabetes mellitus with hyperlipidaemia. Indian J. Med. Res., 100, 237–241, 1994.

201. Chen, H., Siebenmorgen, T. J. & Griffin, K., Quality characteristics of long-grain rice milled in two commercial systems. Cereal Chem., 75, 560–565, 1998.

202. Chen, H. H., Chen, Y. K. & Chang, H. C., Evaluation of physicochemical properties of plasma treated brown rice. Food Chem., 135, 74–79, 2012.

203. Fresco, L., Rice is life. J. Food Compos. Anal., 18, 249–253, 2005.

204. Wu, F., Yang, N., Touré, A., Jin, Z. & Xu, X., Germinated brown rice and its role in human health. Crit. Rev. Food Sci. Nutr., 53, 451–463, 2013.

205. Ohtsubo, K., Suzuki, K., Yasui, Y. & Kasumi, T., Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J. Food Compos. Anal., 18, 303–316, 2005.

206. Cho, D. H. & Lim, S. T., Germinated brown rice and its bio-functional compounds. Food Chem., 196, 259–271, 2016.

207. Mew, T. W., Brar, D. S., Peng, S., Dawe, D. & Hardy, B., Rice science: Innovations and impact for livelihood, p. 1022, Manila Intl. Press, Metro Manila, Philippines, 2003.

208. Müller-Fischer, N., Nutrient-focused processing of rice, in: Agricultural Sustainability, G. S. Bhullar & N. K. Bhullar (Eds.), pp. 197–220, Academic Press, London, UK, 2013.

209. Liu, K., Cao, X., Bai, Q., Wen, H. & Gu, Z., Relationships between physical properties of brown rice and degree of milling and loss of selenium. J. Food Eng., 94, 69–74, 2009.

210. Zhou, H. M. & Zhang, M. P., Study the functional component of brown rice. J. Chinese Inst. Food Sci. Technol., 5, 17–19, 2002.

211. Butsat, S. & Siriamornpun, S., Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem., 119, 606–613, 2010.

212. Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. & Kimura, T., Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng., 78, 556–560, 2007.

213. Cornejo, F., Caceres, P. J., Martínez-Villaluenga, C., Rosell, C. M. & Frias, J., Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chem., 173, 298–304, 2015.

214. Oh, C. H. & Oh, S. H., Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food, 7, 19–23, 2004.

215. Sun, Q., Spiegelman, D., Van Dam, R. M., Holmes, M. D., Malik, V. S., Willett, W. C. & Hu, F. B., White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch. Intern. Med., 170, 961–969, 2010.

216. Kong, F., Oztop, M. H., Singh, R. P. & McCarthy, M. J., Physical changes in white and brown rice during simulated gastric digestion. J. Food Sci., 76, E450–E457, 2011.

217. Seetharam, G., Small millet research. Indian J. Agric. Sci., 68, 431–438, 1999.

218. Kalinova, J. & Moudry, J., Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum. Nutr., 61, 45–49, 2006.

219. Bagdi, A., Balázs, G., Schmidt, J., Szatmári, M., Schoenlechner, R., Berghofer, E. & Tömösközia, S., Protein characterization and nutrient composition of Hungarian proso millet varieties and the effect of decortication. Acta Aliment., 40, 128–141, 2011.

220. Schoenlechner, R., Szatmari, M., Bagdi, A. & Tömösközi, S., Optimisation of bread quality produced from wheat and proso millet (Panicum miliaceum L.) by adding emulsifiers, transglutaminase and xylanase. LWT - Food Sci. Technol., 51, 361–366, 2013.

221. Chethan, S. & Malleshi, N. G., Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem., 105, 862–870, 2007.

222. McSweeney, M. B., Seetharaman, K., Ramdath, D. D. & Duizer, L. M., Chemical and physical characteristics of proso millet (Panicum miliaceum)-based products. Cereal Chem. J., 94, 357–362, 2017.

223. Shobana, S. & Malleshi, N. G., Preparation and functional properties of decorticated finger millet (Eleusine coracana). J. Food Eng., 79, 529–538, 2007.

224. Subba Rao, M. V. S. S. T. & Muralikrishna, G., Non-starch polysaccharides and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana, Indaf - 15). Food Chem., 72, 187–192, 2001.

225. Gupta, N., Srivastava, A. K. & Pandey, V. N., Biodiversity and nutraceutical quality of some Indian millets. Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci., 82, 265–273, 2012.

226. Saleh, A. S. M., Zhang, Q., Chen, J. & Shen, Q., Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf., 12, 281–295, 2013.

227. Devi, P. B., Vijayabharathi, R., Sathyabama, S., Malleshi, N. G. & Priyadarisini, V. B., Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Tech. Mys., 51, 1021–1040, 2014.

228. Awika, J. M. & Rooney, L. W., Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65, 1199–1221, 2004.

229. Neucere, N. J. & Sumrell, G., Chemical composition of different varieties of grain sorghum. J. Agric. Food Chem., 28, 19–21, 1980.

230. Hulse, J. H., Laing, E. M. & Pearson, O. E., Sorghum and the millets: Their composition and nutritive value, p. 997, Academic Press, London, 1980.

231. Khalil, J. K., Sawaya, W. N., Safi, W. J. & Al-Mohammad, H. M., Chemical composition and nutritional quality of sorghum flour and bread. Qual. Plantarum, Plant Foods Hum. Nutr., 34, 141–150, 1984.

232. Dykes, L. & Rooney, L. W., Sorghum and millet phenols and antioxidants. J. Cereal Sci., 44, 236–251, 2006.

233. Bralley, E., Greenspan, P., Hargrove, J. L. & Hartle, D. K., Inhibition of hyaluronidase activity by select sorghum brans. J. Med. Food, 11, 307–312, 2008.

234. Dykes, L., Seitz, L. M., Rooney, W. L. & Rooney, L. W., Flavonoid composition of red sorghum genotypes. Food Chem., 116, 313–317, 2009.

235. Tenaillon, M. I. & Charcosset, A. A., European perspective on maize history. C. R. Biol., 334, 221–228, 2011.

236. Yang, G., Wang, Q., Liu, C., Wang, X., Fan, S. & Huang, W., Rapid and visual detection of the main chemical compositions in maize seeds based on Raman hyperspectral imaging. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 200, 186–194, 2018.

237. Zaidi, P. H. & Singh, N. N., Stresses on maize in tropics, p. 500, Director of Maize reserch, New Delhi, 2005.

238. Abbassian, A., Maize: International market profile, p. 37, Food and Agriculture Organization of the United Nations, 2006.

239. Mina, U., Kumar, R., Gogoi, R., Bhatia, A., Harit, R. C., Singh, D., Kumar, A. & Kumar, A., Effect of elevated temperature and carbon dioxide on maize genotypes health index. Ecol. Indic., 105, 292–302, 2019.

240. Abbasi, A. & Niakousari, M., Kinetics of ascorbic acid degradation in un-pasteurized Iranian lemon juice during regular storage conditions. Pakistan J. Biol. Sci., 11, 1365–1369, 2008.

241. Haq, I. -U.-, Khan, A. A., Khan, I. A. & Azmat, M. A., Comprehensive screening and selection of okra (Abelmoschus esculentus) germplasm for salinity tolerance at the seedling stage and during plant ontogeny. J. Zhejiang Univ. Sci. B, 13, 533–544, 2012.

242. Qamar, S., Aslam, M. & Javed, M. A., Determination of proximate chemical composition and detection of inorganic nutrients in maize (Zea mays L.). Mater. Today Proc., 3, 715–718, 2016.

243. Adom, K. K. & Rui, H. L., Antioxidant activity of grains. J. Agric. Food Chem., 50, 6182–6187, 2002.

244. Smith, C. W., Betrán, J. & Runge, E. C. A., Corn: Origin, history, technology, and production, Vol. 4, p. 976, John Wiley & Sons, 2004.

245. Rooney, L. W. & Serna-Saldivar, S. O., Tortillas: Wheat flour and corn products, p. 288, AACC International, St. Paul, MN, USA, 2015.

246. Montero-Vargas, J. M., Ortíz-Islas, S., Ramírez-Sánchez, O., García-Lara, S. & Winkler, R., Prediction of the antioxidant capacity of maize (Zea mays) hybrids using mass fingerprinting and data mining. Food Biosci., 37, 100647, 2020.

247. Siyuan, S., Tong, L. & Liu, R. H., Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness, 7, 185–195, 2018.

248. Frank, J., Sundberg, B., Kamal-Eldin, A., Vessby, B. & Åman, P., Yeast-leavened oat breads with high or low molecular weight β-glucan do not differ in their effects on blood concentrations of lipids, insulin, or glucose in humans. J. Nutr., 134, 1384–1388, 2004.

249. Bushuk, W., Rye production and uses worldwide. Cereal Foods World, 46, 70–73, 2001.

250. Michalska, A., Ceglinska, A., Amarowicz, R., Piskula, M. K., Szawara-Nowak, D. & Zielinski, H., Antioxidant contents and antioxidative properties of traditional rye breads. J. Agric. Food Chem., 55, 734–740, 2007.

251. Ishida, Y., Hiei, Y. & Komari, T., High-efficiency transformation techniques, in: Applications of Genetic and Genomic Research in Cereals, T. Miedaner & V. Korzun (Eds.), pp. 97–120, Woodhead Publishing, 2019.

252. Price, R. K. & Welch, R. W., Cereal grains, in: Reference Module in Biomedical Sciences Encyclopedia of Human Nutrition, B. Caballero (ed.), pp. 307–316, Academic Press, Oxford, 2003.

253. Poutanen, K., Rye and rye bread-An important part of the North European bread basket, in: Rye and Health, K. Poutanen & P. Åman (eds.), pp. 1–6, American Association of Cereal Chemists International, 2014.

254. Salovaara, H. & Autio, K., Rye and triticale, in: Cereals and Cereal Products, D. A. V. Dendy & B. J. Dobraszczyk (eds.), pp. 391–410, Aspen Publishers, 2001.

255. Martinez-Villaluenga, C., Michalska, A., Frias, J., Piskula, M. K., Vidal-Valverde, C. & Zieliński, H., Effect of flour extraction rate and baking on thiamine and riboflavin content and antioxidant capacity of traditional rye bread. J. Food Sci., 74, C49–C55, 2009.

256. Bondia-Pons, I., Aura, A. M., Vuorela, S., Kolehmainen, M., Mykkänen, H. & Poutanen, K., Rye phenolics in nutrition and health. J. Cereal Sci., 49, 323–336, 2009.

257. Amarowicz, R. & Weidner, S., Content of phenolic acids in rye caryopses determined using DAD-HPLC method. Czech J. Food Sci., 19, 201–206, 2001.

258. Kulichová, K., Sokol, J., Nemeček, P., Maliarová, M., Maliar, T., Havrlentová, M. & Kraic, J., Phenolic compounds and biological activities of rye (Secale cereale L.) grains. Open Chem., 17, 988–999, 2019.

259. Bushuk, W., Rye: Production, Chemistry, and Technology, American Association of Cereal Chemists, 2001.

260. Hansen, H. B., Møller, B., Andersen, S. B., Jørgensen, J. R. & Ase, H., Grain characteristics, chemical composition, and functional properties of rye (Secale cereale L.) as influenced by genotype and harvest year. J. Agric. Food Chem., 52, 2282–2291, 2004.

261. Henry, R. J. & Saini, H., Characterization of cereal sugars and oligosaccharides. Cereal Chem., 66, 362–365, 1989.

262. Hackl, W., Pieper, B., Pieper, R., Korn, U. & Zeyner, A., Effects of ensiling cereal grains (barley, wheat, triticale and rye) on total and pre-caecal digestibility of proximate nutrients and amino acids in pigs. J. Anim. Physiol. Anim. Nutr. (Berl)., 94, 729–735, 2010.

263. Hoseney, R. C., Minor constituents of cereals, in: Principles of Cereal Science and Technology, J. A. Delcour & R. C. Hoseney (Eds..), p. 327, American Association of Cereal Chemists, 1986.

264. Bengtsson, S. & Åman, P., Isolation and chemical characterization of water-soluble arabinoxylans in rye grain. Carbohydr. Polym., 12, 267–277, 1990.

265. Bedford, M. R., Classen, H. L. & Campbell, G. L., The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult. Sci., 70, 1571–1577, 1991.

266. Boros, D., Marquardt, R. R., Slominski, B. A. & Guenter, W., Extract viscosity as an indirect assay for water-soluble pentosan content in rye. Cereal Chem., 70, 575–580, 1993.

267. Wang, S., Thomas, K. C., Ingledew, W. M., Sosulski, K. & Sosulski, F. W., Rye and triticale as feedstock for fuel ethanol production. Cereal Chem. J., 74, 621–625, 1997.

268. Kritchevsky, D., Dietary fibre in health and disease., in: Advanced Dietary Fibre Technology, B. McCleary & L. Prosky (Eds.), pp. 147–161, Blackwell Science, 2008.

269. Adlercreutz, H., Western diet and Western diseases: Some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Invest. Suppl., 201, 3–23, 1990.

270. Zhang, J. X., Lundin, E., Reuterving, C. O., Hallmans, G., Stenling, R., Westerlund, E. & Aman, P., Effect of rye bran, oat bran and soy bean fibre on lipid and bile metabolisms, and gallbladder morphology in male syrian hamsters, in Dietary Fibre: Chemical and Biological Aspects, D. A. T. Southgate, K. W. Waldron, I. T. Johnson & G. R. Fenwick (Eds.), pp. 313–317, The Royal Society of Chemistry, 1990.

271. Davies, M. J., Bowey, E. A., Adlercreutz, H., Rowland, I. R. & Rumsby, P. C., Effects of soy or rye supplementation of high-fat diets on colon tumour development in azoxymethane-treated rats. Carcinogenesis, 20, 927–931, 1999.

272. Yilmaz, I., Effects of rye bran addition on fatty acid composition and quality characteristics of low-fat meatballs. Meat Sci., 67, 245–249, 2004.

273. Berti, C., Riso, P., Brusamolino, A. & Porrini, M., Effect on appetite control of minor cereal and pseudocereal products. Br. J. Nutr., 94, 850–858, 2005.

274. Marshall, E. & Mejia, D., Traditional fermented food and beverages for improved livelihoods, p. 79, Rural Infrastructure and Agro-Industries Division Food and Agriculture Organization of the United Nations, Rome, Italy, 2012.

275. Altay, F., Karbancıoglu-Güler, F., Daskaya-Dikmen, C. & Heperkan, D., A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics. Int. J. Food Microbiol., 167, 44–56, 2013.

276. Solange, A., Georgette, K., Gilbert, F., Marcellin, D. K. & Bassirou, B., Review on African traditional cereal beverages. Am. J. Res. Commun., 2, 153, 2014.

277. Joshi, V. K., Indigenous fermented foods of South Asia, p. 886, CRC Press, Boca Raton, FL, USA, 2016.

278. Hui, Y. H., Plant-based fermented food and beverage technology, p. 790, CRC Press, Inc, Boca Raton, Florida, 2012.

1 *Corresponding author: semih.otles@ege.edu.tr

Functional Foods

Подняться наверх