Читать книгу Fractures in the Horse - Группа авторов - Страница 66
References
Оглавление1 1 Burr, D.B., Martin, R.B., Schaffler, M.B., and Radin, E.L. (1985). Bone remodelling in response to in vivo fatigue microdamage. J. Biomech. 18: 189–200.
2 2 Mori, S. and Burr, D. (1993). Increased intracortical remodelling following fatigue damage. Bone 14: 103–109.
3 3 Lee, T., Staines, A., and Taylor, D. (2002). Bone adaptation to load: microdamage as a stimulus for bone remodelling. J. Anat. 201: 437–446.
4 4 Taylor, D. (2003). Failure processes in hard and soft tissues. In: Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro, 1e (eds. I. Milne, R.O. Ritchie and B.L. Karihaloo), 35–95. Oxford: Elsevier.
5 5 McCormack, J., Stover, S.M., Gibeling, J.C., and Fyhrie, D.P. (2012). Effects of mineral content on the fracture properties of equine cortical bone in double‐notched beams. Bone 50: 1275–1280.
6 6 Ritchie, R.O., Kinney, J.H., Kruzic, J.J., and Nalla, R.K. (2005). A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract. Eng. Mater. Struct. 28: 345–371.
7 7 Feng, X. (2009). Chemical and biochemical basis of cell‐bone matrix interaction in health and disease. Curr. Chem. Biol. 3: 189–196.
8 8 Burstein, A.H., Zika, J.M., Heiple, K.G., and Klein, L. (1975). Contribution of collagen and mineral to the elastic‐plastic properties of bone. J. Bone Joint Surg. Am. 57: 956–961.
9 9 Currey, J.D. (1969). The mechanical consequences of variation in the mineral content of bone. J. Biomech. 2: 1–11.
10 10 Currey, J. (1984). The Mechanical Adaptations of Bones. Princeton, NJ: Princeton University Press.
11 11 Wang, X., Bank, R.A., Tekoppele, J.M., and Agrawal, C.M. (2001). The role of collagen in determining bone mechanical properties. J. Orthop. Res. 19: 1021–1026.
12 12 Wang, X., Shen, X., Li, X., and Mauli, A.C. (2002). Age‐related changes in the collagen network and toughness of bone. Bone 31: 1–7.
13 13 Rho, J.‐Y., Kuhn‐Spearing, L., and Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20: 92–102.
14 14 Friedman, A.W. (2006). Important determinants of bone strength: beyond bone mineral density. J. Clin. Rheumatol. 12: 70–77.
15 15 Martin, R.M. and Correa, P.H.S. (2010). Bone quality and osteoporosis therapy. Arq. Bras. Endocrinol. Metabol. 54: 186–199.
16 16 Fonseca, H., Moreira‐Gonçalves, D., Coriolano, H.‐J.A., and Duarte, J.A. (2014). Bone quality: the determinants of bone strength and fragility. Sports Med. 44: 37–53.
17 17 Currey, J. (1982). 'Osteons' in biomechanical literature. J. Biomech. 15: 717.
18 18 Gibson, V.A., Stover, S.M., Gibeling, J.C. et al. (2006). Osteonal effects on elastic modulus and fatigue life in equine bone. J. Biomech. 39: 217–225.
19 19 Stover, S.M., Pool, R.R., Martin, R.B., and Morgan, J.P. (1992). Histological features of the dorsal cortex of the third metacarpal bone mid‐diaphysis during postnatal growth in Thoroughbred horses. J. Anat. 181: 455–469.
20 20 Okada, H., Tamamura, R., Kanno, T. et al. (2013). Ultrastructure of cement lines. J. Hard Tissue. Biol. 22: 445–450.
21 21 Nakayama, H., Takakuda, K., Matsumoto, H.N. et al. (2010). Effects of altered bone remodeling and retention of cement lines on bone quality in Osteopetrotic aged c‐Src‐deficient mice. Calcif. Tissue Int. 86: 172–183.
22 22 Schaffler, M.B., Burr, D.B., and Frederickson, R.G. (1987). Morphology of the osteonal cement line in human bone. Anat. Rec. 217: 223–228.
23 23 Burr, D.S., Schaffler, M.B., and Frederickson, R.G. (1988). Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J. Biomech. 21: 939–945.
24 24 Burr, D. (2011). Why bones bend but don't break. J. Musculoskelet. Neuronal Interact. 11: 270–285.
25 25 Boskey, A.L. (2013). Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2: 447.
26 26 Kulin, R.M., Jiang, F., and Vecchio, K.S. (2011). Loading rate effects on the R‐curve behavior of cortical bone. Acta Biomater. 7: 724–732.
27 27 Adharapurapu, R.R., Jiang, F., and Vecchio, K.S. (2006). Dynamic fracture of bovine bone. Mater. Sci. Eng. C 26: 1325–1332.
28 28 Evans, A.G. (1990). Perspective on the development of high‐toughness ceramics. J. Am. Ceram. Soc. 73: 187–206.
29 29 Kirchner, H. (2006). Ductility and brittleness of bone. Int. J. Fract. 139: 509–516.
30 30 Zioupos, P., Kaffy, C., and Currey, J. (2006). Tissue heterogeneity, composite architecture and fractal dimension effects in the fracture of ageing human bone. Int J Frac. 139: 407–424.
31 31 Wasserman, N., Brydges, B., Searles, S., and Akkus, O. (2008). in vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. Bone 43: 856–861.
32 32 Ritchie, R.O., Buehler, M.J., and Hansma, P. (2009). Plasticity and toughness in bone. Phys. Today 62: 41–47.
33 33 Behiri, J. and Bonfield, W. (1984). Fracture mechanics of bone – the effects of density, specimen thickness and crack velocity on longitudinal fracture. J. Biomech. 17: 25–34.
34 34 Nalla, R., Kinney, J., and Ritchie, R. (2003). On the fracture of human dentin: is it stress‐or strain‐controlled? J. Biomed. Mater. 67: 484–495.
35 35 Nordin, M. and Frankel, V.H. (2012). Biomechanics of bone. In: Basic Biomechanics of the Musculoskeletal System, 4e (eds. M. Nordin and V.H. Frankel), 472. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health.
36 36 Morgan, E.F. and Bouxsein, M.L. (2008). Biomechanics of bone and age‐related fractures. In: Principles of Bone Biology, 3e (eds. J.P. Bilezikian, L.G. Raisz and T.J. Martin), 29–51. San Diego: Academic Press.
37 37 Watkins, J.P. and Sampson, S.N. (2019). Fractures of the tibia. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 648–663. Hoboken, NJ: Wiley.
38 38 Anthenill, L.A., Gardner, I.A., Pool, R.R. et al. (2010). Comparison of macrostructural and microstructural bone features in Thoroughbred racehorses with and without midbody fracture of the proximal sesamoid bone. Am. J. Vet. Res. 71: 755–765.
39 39 Bramlage, L., Schneider, R., and Gabel, A. (1988). A clinical perspective on lameness originating in the carpus. Equine Vet. J. 20: 12–18.
40 40 Olusa, T.A., Akbar, Z., Murray, C.M., and Davies, H.M. (2020). Morphometric analysis of the intercarpal ligaments of the equine proximal carpal bones during simulated flexion and extension of cadaver limbs. Anat. Histol. Embryol. 50: 1–10.
41 41 O'Brien, F.J., Hardiman, D.A., Hazenberg, J.G. et al. (2005). The behaviour of microcracks in compact bone. Eur. J. Morphol. 42: 71–79.
42 42 Moreno, M.R., Zambrano, S., Dejardin, L.M., and Saunders, W.B. (2017). Bone biomechanics and fracture biology. In: Veterinary Surgery: Small Animal Expert Consult, 2e (eds. S.A. Johnston and K.M. Tobias), 612–648. Philadelphia, PA: Elsevier.
43 43 Lopez, M.J. (2019). Bone biology and fracture healing. In: Equine Surgery, 5e (eds. J.A. Auer, J.A. Stick, J.M. Kümmerle and T. Prange), 1255–1269. St. Louis, MO: Elsevier.
44 44 Markel, M.D. (2019). Fracture biomechanics. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 12–23. Hoboken, NJ: Wiley.
45 45 Galante, J., Rostoker, W., and Ray, R.D. (1970). Physical properties of trabecular bone. Calcif. Tissue Int. 5: 236–246.
46 46 Dempster, W.T. and Liddicoat, R.T. (1952). Compact bone as a non‐isotropic material. Am. J. Anat. 91: 331–362.
47 47 Osterhoff, G., Morgan, E.F., Shefelbine, S.J. et al. (2016). Bone mechanical properties and changes with osteoporosis. Injury 47: S11–S20.
48 48 Young, D.R., Nunamaker, D.M., and Markel, M.D. (1991). Quantitative evaluation of the remodeling response of the proximal sesamoid bones to training‐related stimuli in thoroughbreds. Am. J. Vet. Res. 52: 1350–1356.
49 49 Thompson, K.N. and Cheung, T.K. (1994). A finite element model of the proximal sesamoid bones of the horse under different loading conditions. Vet. Comp. Orthop. Traumatol. 7: 35–39.
50 50 Nixon, A.J. (2019). Phalanges and the metacarpophalangeal and metatarsophalangeal joints. In: Equine Surgery, 5e (eds. J.A. Auer, J.A. Stick, J.M. Kümmerle and T. Prange), 1587–1618. St. Louis, MO: Elsevier.
51 51 Anthenill, L.A.S., Gardner, S.M., Hill, I.A. et al. (2006). Association between findings on palmarodorsal radiographic images and detection of a fracture in the proximal sesamoid bones of forelimbs obtained from cadavers of racing thoroughbreds. Am. J. Vet. Res. 67: 858–868.
52 52 Sanders‐Shamis, M., Bramlage, L.R., and Gable, A.A. (1986). Radius fractures in the horse: a retrospective study of 47 cases. Equine Vet. J. 18: 432–437.
53 53 Fürst, A., Oswald, S., Jäggin, S. et al. (2008). Fracture configurations of the equine radius and tibia after a simulated kick. Vet. Comp. Orthop. Traumatol. 21 (01): 49–58.
54 54 Radcliffe, R.M., Lopez, M.J., Turner, T.A. et al. (2001). An in vitro biomechanical comparison of interlocking nail constructs and double plating for fixation of diaphyseal femur fractures in immature horses. Vet. Surg. 30: 179–190.
55 55 Hance, S.R., Bramlage, L.R., Schneider, R.K., and Embertson, R.M. (1992). Retrospective study of 38 cases of femur fractures in horses less than one year of age. Equine Vet. J. 24: 357–363.
56 56 Nixon, A.J., Bramlage, L.R., and Hance, S.R. (2019). Fractures of the femur. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 688–705. Hoboken, NJ: Wiley.
57 57 McDuffee, L.A., Stover, S.M., Taylor, K.T., and Les, C.M. (1994). An in vitro biomechanical investigation of an interlocking nail for fixation of diaphyseal tibial fractures in adult horses. Vet. Surg. 23: 219–230.
58 58 Nixon, A.J. and Watkins, J.P. (2019). Fractures of the Humerus. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 567–587. Hoboken, NJ: Wiley.
59 59 Carter, B.G., Schneider, R.K., Hardy, J. et al. (1993). Assessment and treatment of equine humeral fractures: retrospective study of 54 cases (1972–1990). Equine Vet. J. 25: 203–207.
60 60 Radtke, C.L., Danova, N.A., Scollay, M.C. et al. (2003). Macroscopic changes in the distal ends of the third metacarpal and metatarsal bones of Thoroughbred racehorses with condylar fractures. Am. J. Vet. Res. 64: 1110–1116.
61 61 Le Jeune, S.S., Macdonald, M.H., Stover, S.M. et al. (2003). Biomechanical investigation of the association between suspensory ligament injury and lateral condylar fracture in Thoroughbred racehorses. Vet. Surg. 32: 585–597.
62 62 Riggs, C. and Boyde, A. (1999). Effect of exercise on bone density in distal regions of the equine third metacarpal bone in 2‐year‐old thoroughbreds. Equine Vet. J. Suppl. 31: 555–560.
63 63 Riggs, C.M., Whitehouse, G.H., and Boyde, A. (1999). Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse. Equine Vet. J. 31: 140–148.
64 64 Pinchbeck, G. and Murphy, D. (2001). Cervical vertebral fracture in three foals. Equine Vet. Educ. 13: 8–12.
65 65 Ehrle, A., Jones, S., Klose, P., and Lischer, C. (2012). Atypical radiologic appearance of a second cervical vertebral fracture in a horse. J. Equine Vet. Sci. 32: 309–313.
66 66 Muno, J., Samii, V., Gallatin, L. et al. (2009). Cervical vertebral fracture in a Thoroughbred filly with minimal neurological dysfunction. Equine Vet Educ. 21: 527–531.
67 67 Firth, E., Rogers, C., Doube, M., and Jopson, N. (2005). Musculoskeletal responses of 2‐year‐old Thoroughbred horses to early training. 6. Bone parameters in the third metacarpal and third metatarsal bones. N. Z. Vet. J. 53: 101–112.
68 68 Nixon, A.J., Stover, S.M., and Nunamaker, D.M. (2019). Third metacarpal dorsal stress fractures. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 452–464. Hoboken, NJ: Wiley.
69 69 Nunamaker, D.M., Butterweck, D.M., and Provost, M.T. (1990). Fatigue fractures in Thoroughbred racehorses: relationships with age, peak bone strain, and training. J. Orthop. Res. 8: 604–611.
70 70 Wirtz, D.C., Schiffers, N., Pandorf, T. et al. (2000). Critical evaluation of known bone material properties to realize anisotropic FE‐simulation of the proximal femur. J. Biomech. 33: 1325–1330.
71 71 Keaveny, T.M. and Hayes, W.C. (1993). A 20‐year perspective on the mechanical properties of trabecular bone. J. Biomech. Eng. 115: 534–542.
72 72 Keaveny, T. and Hayes, W. (1992). Mechanical properties of cortical and trabecular bone. In: Bone, 7e (ed. B. Hall), 285–344. Boca Raton, FL: CRC Press.
73 73 Selker, F. and Carter, D.R. (1989). Scaling of long bone fracture strength with animal mass. J. Biomech. 22: 1175–1183.
74 74 Sherman, K.M., Miller, G.J., Wronskl, T.J. et al. (1995). The effect of training on equine metacarpal bone breaking strength. Equine Vet. J. 27: 135–139.
75 75 Dowthwaite, J.N., Flowers, P.P.E., Spadaro, J.A., and Scerpella, T.A. (2007). Bone geometry, density, and strength indices of the distal radius reflect loading via childhood gymnastic activity. J. Clin. Densitom. 10: 65–75.
76 76 Daegling, D.J. (2002). Estimation of torsional rigidity in primate long bones. J. Hum. Evol. 43: 229–239.
77 77 Edwards, W.B., Schnitzer, T.J., and Troy, K.L. (2013). Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT. J. Biomech. 46: 1655–1662.
78 78 Haider, I.T., Schneider, P., Michalski, A., and Edwards, W.B. (2018). Influence of geometry on proximal femoral shaft strains: implications for atypical femoral fracture. Bone 110: 295–303.
79 79 Setterbo, J.J., Garcia, T.C., Campbell, I.P. et al. (2009). Hoof accelerations and ground reaction forces of Thoroughbred racehorses measured on dirt, synthetic, and turf track surfaces. Am. J. Vet. Res. 70: 1220–1229.
80 80 Malekipour, F., Hitchens, P.L., Whitton, R.C., and Lee, P.V.‐S. (2020). Effects of in vivo fatigue‐induced subchondral bone microdamage on the mechanical response of cartilage‐bone under a single impact compression. J. Biomech. 100: 109–594.
81 81 Davies, H.M.S., McCarthy, R.N., and Jeffcott, L.B. (1993). Surface strain on the dorsal metacarpus of thoroughbreds at different speeds and gaits. Cells Tissues Organs 146: 148–153.
82 82 Evans, G.P., Behiri, J.C., Vaughan, L.C., and Bonfield, W. (1992). The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse. Equine Vet. J. 24: 125–128.
83 83 Kulin, R.M., Jiang, F., and Vecchio, K.S. (2011). Effects of age and loading rate on equine cortical bone failure. J. Mech. Behav. Biomed. Mater. 4: 57–75.
84 84 Rubin, C.T. and Lanyon, L.E. (1982). Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J. Exp. Biol. 101: 187–211.
85 85 Riggs, C.M. (2002). Fractures – a preventable hazard of racing thoroughbreds? Vet. J. 163: 19–29.
86 86 Bailey, C.J., Reid, S.W.J., Hodgson, D.R. et al. (1998). Flat, hurdle and steeple racing: risk factors for musculoskeletal injury. Equine Vet. J. 30: 498–503.
87 87 Martig, S., Chen, W., Lee, P.V.S., and Whitton, R.C. (2014). Bone fatigue and its implications for injuries in racehorses. Equine Vet. J. 46: 408–415.
88 88 Pinchbeck, G.L., Clegg, P.D., Boyde, A. et al. (2013). Horse‐, training‐ and race‐level risk factors for palmar/plantar osteochondral disease in the racing Thoroughbred. Equine Vet. J. 45: 582–586.
89 89 Kawcak, C.E., McIlwraith, C.W., Norrdin, R.W. et al. (2000). Clinical effects of exercise on subchondral bone of carpal and metacarpophalangeal joints in horses. Am. J. Vet. Res. 61: 1252–1258.
90 90 Cui, W. (2002). A state‐of‐the‐art review on fatigue life prediction methods for metal structures. J. Mar. Sci. Technol. 7: 43–56.
91 91 Carter DaH, W.C. (1977). Compact bone fatigue damage – I. residual strength and stiffness. J. Biomech. 10: 325–337.
92 92 Carter DaH, W.C. (1977). Compact bone fatigue damage: a microscopic examination. Clin. Orthop. Relat. Res.: 265–274.
93 93 Carter, D.R., Caler, W.E., Spengler, D.M., and Frankel, V.H. (1981). Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. Scand. 52: 481–490.
94 94 Hastings A, Gibson LJ, Moore TLA, Cheng DW, Guo XE. Endurance limit for bovine trabecular bone. Paper presented at: Orthopedic Research Society 2004 Annual Meeting; Mar 7–10, 2004; San Francisco, CA, USA.
95 95 Ganguly, P., Moore, T.L.A., and Gibson, L.J. (2004). A phenomenological model for predicting fatigue life in bovine trabecular bone. J. Biomech. Eng. 126: 330–339.
96 96 Zioupos, P. and Currey, J.D. (1994). The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29: 978–986.
97 97 Fleck, C. and Eifler, D. (2003). Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading. J. Biomech. 36: 179–189.
98 98 Schaffler, M., Radin, E., and Burr, D. (1989). Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10: 207–214.
99 99 Martin, R.B., Gibson, V.A., Stover, S.M. et al. (1996). in vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. J. Orthop. Res. 14: 794–801.
100 100 Burr, D.B. and Martin, R.B. (1989). Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am. J. Anat. 186: 186–216.
101 101 Reilly, G.C., Currey, J.D., and Goodship, A.E. (1997). Exercise of young Thoroughbred horses increases impact strength of the third metacarpal bone. J. Orthop. Res. 15: 862–868.
102 102 Ritchie, R. (1988). Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103: 15–28.
103 103 Ritchie, R.O. (1999). Mechanisms of fatigue‐crack propagation in ductile and brittle solids. Int. J. Fract. 100: 55–83.
104 104 Malik, C., Stover, S., Martin, R., and Gibeling, J. (2003). Equine cortical bone exhibits rising R‐curve fracture mechanics. J. Biomech. 36: 191–198.
105 105 Yeni, Y.N. and Norman, T.L. (2000). Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J. Biomed. Mater. Res. 51: 504–509.
106 106 Vashishth, D., Behiri, J., and Bonfield, W. (1997). Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 30: 763–769.
107 107 Yeni YN, Fyhrie DP. Collagen‐bridged microcrack model for cortical bone tensile strength. Paper presented at: American Society of Mechanical Engineers 2001 Conference; Jun 27 Jul 1, 2001; Snowbird, UT, USA.
108 108 Nalla, R.K., Kinney, J.H., and Ritchie, R.O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2: 164–168.
109 109 Nalla, R.K., Kruzic, J.J., and Ritchie, R.O. (2004). On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone 34: 790–798.
110 110 Nalla, R.K., Kruzic, J.J., Kinney, J.H., and Ritchie, R.O. (2005). Mechanistic aspects of fracture and R‐curve behavior in human cortical bone. Biomaterials 26: 217–231.
111 111 Ager, J.W., Balooch, G., and Ritchie, R.O. (2006). Fracture, aging, and disease in bone. J. Mater. Res. 21: 1878–1892.
112 112 Launey, M.E., Buehler, M.J., and Ritchie, R.O. (2010). On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40: 25–53.
113 113 Nalla, R., Stölken, J., Kinney, J., and Ritchie, R. (2005). Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J. Biomech. 38: 1517–1525.
114 114 Nalla, R., Kruzic, J., Kinney, J. et al. (2006). Role of microstructure in the aging‐related deterioration of the toughness of human cortical bone. Mater. Sci. Eng. C 26: 1251–1260.
115 115 Zioupos, P. (1998). Recent developments in the study of failure of solid biomaterials and bone: ‘fracture’ and ‘pre‐fracture’ toughness. Mater. Sci. Eng. C 6: 33–40.
116 116 Galley, S.A. and Donahue, S.W. (2006). Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Crit. Rev. Biomed. Eng. 34: 215–271.
117 117 Burr, D.B., Turner, C.H., Naick, P. et al. (1998). Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31: 337–345.
118 118 Kaplan, F.S., Hayes, W.C., Keaveny, T.M. et al. (1994). Form and function of bone. In: Orthopaedic Basic Science (ed. S.R. Simon), 127–184. Rosemont, IL: American Academy of Orthopaedic Surgeons.
119 119 Martin, R.B. and Burr, D.B. (1989). Structure, Function, and Adaptation of Compact Bone. New York: Raven Press.
120 120 Turley, S.M., Thambyah, A., Riggs, C.M. et al. (2014). Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. J. Anat. 224: 647–658.
121 121 Wolff, J. (1892). Das Gesetz der Transform der Knochen. Berlin: Hirschwald.
122 122 Lynch, M.E., Main, R.P., Xu, Q. et al. (2011). Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone 49: 439–446.
123 123 Radin, E.L., Parker, H.G., Pugh, J.W. et al. (1973). Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J. Biomech. 6: 51–57.
124 124 Turner, C.H., Hsieh, Y.‐F., Müller, R. et al. (2001). Variation in bone biomechanical properties, microstructure, and density in BXH recombinant inbred mice. J. Bone Miner. Res. 16: 206–213.
125 125 Wergedal, J.E., Sheng, M.H.C., Ackert‐Bicknell, C.L. et al. (2005). Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross‐sectional geometry and bone density. Bone 36: 111–122.
126 126 Warden, S.J., Hurst, J.A., Sanders, M.S. et al. (2004). Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J. Bone Miner. Res. 20: 809–816.
127 127 Nunamaker, D.M. (2002). Relationships of exercise regimen and racetrack surface to modeling/remodeling of the third metacarpal bone in two‐year‐old Thoroughbred racehorses. Vet. Comp. Orthop. Traumatol. 15: 195–199.
128 128 Riggs, C.M., Whitehouse, G.H., and Boyde, A. (1999). Structural variation of the distal condyles of the third metacarpal and third metatarsal bones in the horse. Equine Vet. J. 31: 130–139.
129 129 Boyde, A., Riggs, C., and Firth, E. (2001). Densification by infilling marrow space in response to exercise in Thoroughbred horse distal cannon bone. Bone 28: S110.
130 130 Martin, R.B., Gibson, V.A., Stover, S.M. et al. (1997). Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture. J. Biomech. 30: 109–114.
131 131 Taylor, D., Casolari, E., and Bignardi, C. (2004). Predicting stress fractures using a probabilistic model of damage, repair and adaptation. J. Orthop. Res. 22: 487–494.
132 132 Martin, B. (1992). A theory of fatigue damage accumulation and repair in cortical bone. J. Orthop. Res. 10: 818–825.
133 133 Wang, X., Thomas, C.D.L., Clement, J.G. et al. (2016). A mechanostatistical approach to cortical bone remodelling: an equine model. Biomech. Model. Mechanobiol. 15: 29–42.
134 134 Hughes, J.M., Popp, K.L., Yanovich, R. et al. (2017). The role of adaptive bone formation in the etiology of stress fracture. Exp. Biol. Med. (Maywood) 242: 897–906.
135 135 Martin, B. (1995). Mathematical model for repair of fatigue damage and stress fracture in osteonal bone. J. Orthop. Res. 13: 309–316.
136 136 Collar, E.M., Zavodovskaya, R., Spriet, M. et al. (2015). Caudal lumbar vertebral fractures in California quarter horse and Thoroughbred racehorses. Equine Vet. J. 47: 573–579.
137 137 Haussler, K.K. and Stover, S.M. (1998). Stress fractures of the vertebral lamina and pelvis in Thoroughbred racehorses. Equine Vet. J. 30: 374–381.
138 138 Stover, S.M. (2003). The epidemiology of Thoroughbred racehorse injuries. Clin. Tech. Equine Pract. 2: 312–322.
139 139 Stover, S.M. and Murray, A. (2008). The California postmortem program: leading the way. Vet. Clin. North Am. Equine Pract. 24: 21–36.
140 140 Vallance, S.A., Spriet, M., and Stover, S.M. (2011). Catastrophic scapular fractures in Californian racehorses: pathology, morphometry and bone density. Equine Vet. J. 43: 676–685.
141 141 Estberg, L., Gardner, I.A., Stover, S.M. et al. (1995). Cumulative racing‐speed exercise distance cluster as a risk factor for fatal musculoskeletal injury in Thoroughbred racehorses in California. Prev. Vet. Med. 24: 253–263.
142 142 Haynes, P.F., Watters, J.W., McClure, J.R., and French, D. (1980). Incomplete tibial fractures in three horses. J. Am. Vet. Med. Assoc. 177: 1143–1145.
143 143 Pilsworth, R.C. and Webbon, P.M. (1988). The use of radionuclide bone scanning in the diagnosis of tibial ‘stress' fractures in the horse: a review of five cases. Equine Vet. J. Suppl. 20: 60–65.
144 144 Stover, S.M., Johnson, B.J., Daft, B.M. et al. (1992). An association between complete and incomplete stress fractures of the humerus in racehorses. Equine Vet. J. 24: 260–263.
145 145 Vallance, S., Lumsden, J., and O'Sullivan, C. (2009). Scapula stress fractures in Thoroughbred racehorses: eight cases (1997–2006). Equine Vet. Educ. 21: 554–559.
146 146 Kraus, B.M., Ross, M.W., and Boswell, R.P. (2005). Stress remodeling and stress fracture of the humerus in four standardbred racehorses. Vet. Radiol. Ultrasound 46: 524–528.
147 147 Mackey, V.S., Trout, D.R., Meagher, D.M., and Hornof, W.J. (1987). Stress fractures of the humerus, radius, and tibia in horses. Vet. Radiol. 28: 26–31.
148 148 O'Sullivan, C.B. and Lumsden, J.M. (2003). Stress fractures of the tibia and humerus in Thoroughbred racehorses: 99 cases (1992–2000). J. Am. Vet. Med. Assoc. 222: 491–498.
149 149 Dimock, A.N., Hoffman, K.D., Puchalski, S.M., and Stover, S.M. (2013). Humeral stress remodelling locations differ in Thoroughbred racehorses training and racing on dirt compared to synthetic racetrack surfaces. Equine Vet. J. 45: 176–181.
150 150 Lacourt, M., Gao, C., Li, A. et al. (2012). Relationship between cartilage and subchondral bone lesions in repetitive impact trauma‐induced equine osteoarthritis. Osteoarthr. Cartil. 20: 572–583.
151 151 Tidswell, H., Innes, J., Avery, N. et al. (2008). High‐intensity exercise induces structural, compositional and metabolic changes in cuboidal bones—findings from an equine athlete model. Bone 43: 724–733.
152 152 Gray, S.N., Spriet, M., Garcia, T.C. et al. (2017). Preexisting lesions associated with complete diaphyseal fractures of the third metacarpal bone in 12 Thoroughbred racehorses. J. Vet. Diagn. Invest. 29: 437–441.
153 153 Pleasant, R., Baker, G., Muhlbauer, M. et al. (1992). Stress reactions and stress fractures of the proximal palmar aspect of the third metacarpal bone in horses: 58 cases (1980–1990). J. Am. Vet. Med. Assoc. 201: 1918–1923.
154 154 Koblik, P., Hornof, W., and Seeherman, H. (1988). Scintigraphic appearance of stress‐induced trauma of the dorsal cortex of the third metacarpal bone in racing Thoroughbred horses: 121 cases (1978–1986). J. Am. Vet. Med. Assoc. 192: 390–395.
155 155 Whitton, R.C., Trope, G.D., Ghasem‐Zadeh, A. et al. (2010). Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone. Bone 47: 826–831.
156 156 Shaffer, S.K., To, C., Garcia, T.C. et al. (2020). Subchondral focal osteopenia associated with proximal sesamoid bone fracture in Thoroughbred racehorses. Equine Vet. J. 00: 1–12.
157 157 Smith, M.R.W. and Wright, I.M. (2014). Are there radiologically identifiable prodromal changes in Thoroughbred racehorses with parasagittal fractures of the proximal phalanx? Equine Vet. J. 46: 88–91.
158 158 Ramzan, P. and Powell, S. (2010). Clinical and imaging features of suspected prodromal fracture of the proximal phalanx in three Thoroughbred racehorses. Equine Vet. J. 42: 164–169.
159 159 Pilsworth, R., Shepherd, M., Herinckx, B., and Holmes, M. (1994). Fracture of the wing of the ilium, adjacent to the sacroiliac joint, in Thoroughbred racehorses. Equine Vet. J. 26: 94–99.
160 160 Verheyen, K., Newton, J., Price, J., and Wood, J. (2006). A case‐control study of factors associated with pelvic and tibial stress fractures in Thoroughbred racehorses in training in the UK. Prev. Vet. Med. 74: 21–35.
161 161 MacKinnon, M.C., Bonder, D., Boston, R.C., and Ross, M.W. (2015). Analysis of stress fractures associated with lameness in Thoroughbred flat racehorses training on different track surfaces undergoing nuclear scintigraphic examination. Equine Vet. J. 47: 296–301.
162 162 Hornof, W.J., Stover, S.M., Koblik, P.D., and Arthur, R.M. (1996). Oblique views of the ilium and the scintigraphic appearance of stress fractures of the ilium. Equine Vet. J. 28: 355–358.
163 163 Hasegawa, M., Kaneko, M., Oikawa, M.‐A. et al. (1988). Pathological studies on distal third tibial fractures on the plantar side in racehorses. Bull. Equine Res. Inst. 25: 6–14.
164 164 Stover S, Ardans A, Read D, Johnson B, Barr B, Daft B, et al. Patterns of stress fractures associated with complete bone fractures in racehorses. Paper presented at: American Association of Equine Practitioners 1993 Annual Conference; Dec 5–8, 1993; San Antonio, TX, USA.
165 165 Stover, S.M., Hornof, W., Richardson, G., and Meagher, D. (1986). Bone scintigraphy as an aid in the diagnosis of occult distal tarsal bone trauma in three horses. J. Am. Vet. Med. Assoc. 188: 624–628.
166 166 Bathe AP, Riggs C, Boyde A. (2011) Investigations into the aetiology of tarsal slab fractures in Thoroughbred racehorses. Paper presented at: Veterinary Orthopedic Society 2011 Annual Conference; March 5–12, 2011; Snowmass, CO, USA.
167 167 Estberg, L., Stover, S.M., Gardner, I.A. et al. (1996). Fatal musculoskeletal injuries incurred during racing and training in thoroughbreds. J. Am. Vet. Med. Assoc. 208: 92–96.
168 168 Kawcak, C.E., Bramlage, L.R., and Embertson, R.M. (1995). Diagnosis and management of incomplete fracture of the distal palmar aspect of the third metacarpal bone in five horses. J. Am. Vet. Med. Assoc. 206: 335–337.
169 169 Vallance, S.A., Entwistle, R.C., Hitchens, P.L. et al. (2013). Case‐control study of high‐speed exercise history of Thoroughbred and quarter horse racehorses that died related to a complete scapular fracture. Equine Vet. J. 45: 284–292.
170 170 Stover, S.M. (2017). Nomenclature, classification, and documentation of catastrophic fractures and associated preexisting injuries in racehorses. J. Vet. Diagn. Invest. 29: 396–404.
171 171 Gustilo, R.B., Merkow, R.L., and Templeman, D. (1990). The management of open fractures. J. Bone Joint Surg. Am. 72: 299–304.
172 172 Turner, A. (1982). Long bone fractures in horses part I. Initial management. Compend. Cont. Educ Pract. Vet. 3: 347–353.
173 173 Richardson, D.W. (2008). Less invasive techniques for equine fracture repair and arthrodesis. Vet. Clin. North Am. Equine Pract. 24: 177–189.
174 174 Salter, R.B. and Harris, W.R. (1963). Injuries involving the epiphyseal plate. J. Bone Joint Surg. Am. 45: 587–622.
175 175 Embertson, R.M., Bramlage, L.R., Herring, D.S., and Gabel, A.A. (1986). Physeal fractures in the horse: I. Classification and incidence. Vet. Surg. 15: 223–229.
176 176 Watkins, J.P. (2006). Etiology, diagnosis, and treatment of long bone fractures in foals. Clin Tech Equine Prac. 5: 296–308.
177 177 Barclay, W.P., Foerner, J.J., and Phillips, T.N. (1985). Axial sesamoid injuries associated with lateral condylar fractures in horses. J. Am. Vet. Med. Assoc. 186:278–279.
178 178 Watkins, J.P., Glass, K.G., and Kümmerle, J.M. (2019). Radius and Ulna. In: Equine Surgery, 5e (eds. J.A. Auer, J.A. Stick, J.M. Kümmerle and T. Prange), 1667–1689. St. Louis, MO: Elsevier.
179 179 Levine, D.G. and Aitken, M.R. (2017). Physeal fractures in foals. Vet. Clin. North Am. Equine Pract. 33: 417–430.
180 180 Nixon, A.J. (2019). General considerations for fracture repair. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 35–43. Hoboken, NJ: Wiley.
181 181 Bischofberger, A.S., Fürst, A., Auer, J., and Lischer, C. (2009). Surgical management of complete diaphyseal third metacarpal and metatarsal bone fractures: clinical outcome in 10 mature horses and 11 foals. Equine Vet. J. 4: 465–473.
182 182 Bramlage, L.R. (1983). Long bone fractures. Vet. Clin. North Am. Large Anim. Pract. 5: 285–310.
183 183 Embertson, R.M., Bramlage, L.R., and Gabel, A.A. (1986). Physeal fractures in the horse II. Management and outcome. Vet. Surg. 15: 230–236.
184 184 Glass, K. and Watts, A.E. (2017). Diagnosis and treatment considerations for Nonphyseal long bone fractures in the foal. Vet. Clin. North Am. Equine Pract. 33: 431–438.
185 185 Matthews, S., Dart, A., Dowling, B., and Hodgson, D. (2002). Conservative management of minimally displaced radial fractures in three horses. Aust. Vet. J. 80: 44–47.
186 186 Crawford, W.H. and Fretz, P.B. (1985). Long bone fractures in large animals a retrospective study. Vet. Surg. 14: 295–302.
187 187 Ahern, B.J., Richardson, D.W., Boston, R.C., and Schaer, T.P. (2010). Orthopedic infections in equine long bone fractures and Arthrodeses treated by internal fixation: 192 cases (1990–2006). Vet. Surg. 39: 588–593.
188 188 Curtiss, A.L., Stefanovski, D., and Richardson, D.W. (2019). Surgical site infection associated with equine orthopedic internal fixation: 155 cases (2008–2016). Vet. Surg. 48: 685–693.
189 189 Fortier, L.A. (2019). Shoulder. In: Equine Surgery, 5e (eds. J.A. Auer, J.A. Stick, J.M. Kümmerle and T. Prange), 1699–1709. St. Louis, MO: Elsevier.
190 190 Morgan, R. and Dyson, S. (2012). Incomplete longitudinal fractures and fatigue injury of the proximopalmar medial aspect of the third metacarpal bone in 55 horses. Equine Vet. J. 44: 64–70.
191 191 Rose, P.L., Watkins, J.P., and Auer, J.A. (1984). Femoral fracture repair complicated by vascular injury in a foal. J. Am. Vet. Med. Assoc. 185: 795–797.
192 192 Bramlage, L.R. (2019). Arthrodesis of the Metacarpo‐metatarsophalangeal joint. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 425–435. Hoboken, NJ: Wiley.
193 193 Moore, B.R., Weisbrode, S.E., Biller, D.S., and Williams, J. (1995). Metacarpal fracture associated with lymphosarcoma‐induced osteolysis in a horse. J. Am. Vet. Med. Assoc. 207: 208–210.
194 194 Bertone, A.L., Powers, B.E., and Turner, A.S. (1984). Chondrosarcoma in the radius of a horse. J. Am. Vet. Med. Assoc. 185: 534–537.
195 195 Zaruby, J.F., Williams, J.W., and Lovering, S.L. (1993). Periosteal osteosarcoma of the scapula in a horse. Can. Vet. J. 34: 742–744.
196 196 Stewart, A.J., Salazar, P., Waldridge, B.M. et al. (2007). Computed tomographic diagnosis of a pathological fracture due to rhodococcal osteomyelitis and spinal abscess in a foal. Equine vet. Educ. 19: 231–235.
197 197 Arens, A.M., Barr, B., Puchalski, S.M. et al. (2011). Osteoporosis associated with pulmonary silicosis in an equine bone fragility syndrome. Vet. Pathol. 48: 593–615.
198 198 Durham M, Armstrong CM. Fractures and bone deformities in 18 horses with silicosis. Paper presented at: American Association of Equine Practitioners 2006 Annual Conference; Dec 2–6, 2006; San Antonio, TX, USA.
199 199 Symons, J.E., Entwistle, R.C., Arens, A.M. et al. (2012). Mechanical and morphological properties of trabecular bone samples obtained from third metacarpal bones of cadavers of horses with a bone fragility syndrome and horses unaffected by that syndrome. Am. J. Vet. Res. 73: 1742–1751.
200 200 Daft, B.M., Barr, B.C., Collins, N., and Sverlow, K. (1997). Neospora encephalomyelitis and polyradiculoneuritis in an aged mare with Cushing's disease. Equine Vet. J. 29: 240–243.