Читать книгу Artificial Intelligent Techniques for Wireless Communication and Networking - Группа авторов - Страница 34

References

Оглавление

1. Arulkumaran, K., Deisenroth, M., Brundage, M., Bharath, A., A Brief Survey of Deep Reinforcement Learning. IEEE Signal Process. Mag., 34, 1–16, 2017, 10.1109/MSP .2017.2743240.

2. Botvinick, M., Wang, J., Dabney, W., Miller, K., Kurth-Nelson, Z., Deep Reinforcement Learning and its Neuroscientific Implications, Neuron, 107, 603–616. 2020.

3. Duryea, E., Ganger, M., Hu, W., Exploring Deep Reinforcement Learning with Multi Q-Learning. Intell. Control Autom., 07, 129–144, 2016, 10.4236/ica.2016.74012.

4. Fenjiro, Y. and Benbrahim, H., Deep Reinforcement Learning Overview of the state of the Art. J. Autom. Mob. Robot. Intell. Syst., 12, 20–39, 2018, 10.14313/JAMRIS_3-2018/15.

5. Francois, V., Henderson, P., Islam, R., Bellemare, M., Pineau, J., An Introduction to Deep Reinforcement Learning, Foundations and Trends in Machine Learning, Boston—Delft, 2018, 10.1561/2200000071.

6. Haj Ali, A., Ahmed, N., Willke, T., Gonzalez, J., Asanovic, K., Stoica, I., A View on Deep Reinforcement Learning in System Optimization, arXiv:1908.01275v3 Intel Labs, University of California, Berkeley, 2019.

7. Heidrich-Meisner, V., Lauer, M., Igel, C., Riedmiller, M., Reinforcement learning in a Nutshell. ESANN'2007 Proceedings - European Symposium on Artificial Neural Networks, Bruges (Belgium), 277–288, 2007.

8. Ivanov, S. and D’yakonov, A., Modern Deep Reinforcement Learning Algorithms, arXiv preprint arXiv:1906.10025, 1–56, 2019.

9. Le Pham, T., Layek, A., Vien, N., Chung, T.C., Deep reinforcement learning algorithms for steering an underactuated ship in: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2017), 602–607, 2017, 10.1109/MFI.2017.8170388.

10. Li, M.-J., Li, A.-H., Huang, Y.-J., Chu, S.-I., Implementation of Deep Reinforcement Learning. ICISS 2019: Proceedings of the 2019 2nd International Conference on Information Science and Systems, pp. 232–236, 2019, 10.1145/3322645.3322693.

11. Liu, Q., Zhai, J.-W., Zhang, Z.-Z., Zhong, S., Zhou, Q., Zhang, P., Xu, J., A Survey on Deep Reinforcement Learning. Jisuanji Xuebao/Chin. J. Comput., 41, 1–27, 2018, 10.11897/SP.J.1016 .2018. 00001.

12. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves, A., Riedmiller, M., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., Human-level control through deep reinforcement learning. Nature, 518, 529–33, 2015, 10.1038/nature14236.

13. Mosavi, A., Ghamisi, P., Faghan, Y., Duan, P., Band, S., Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics, Mathematics, 8, 1–42, 2020, 10.20944/preprints 202003.0309.v1.

14. Mousavi, S., Schukat, M., Howley, E., Deep Reinforcement Learning: An Overview, in: Lecture Notes in Networks and Systems, pp. 426–440, 2018, 10.1007/978-3-319-56991-8_32.

15. Nguyen, C., Dinh Thai, H., Gong, S., Niyato, D., Wang, P., Liang, Y.-C., Kim, D.I., Applications of Deep Reinforcement Learning in Communications and Networking: A Survey. IEEE Commun. Surv. Tutorials, 21, 4, 1–1, 2019, 10.1109/COMST.2019.2916583.

16. Sangeetha, S.K.B. and Ananthajothi, K., Machine Learning Tools for Digital Pathology—The Next Big Wave in Medical Science. Solid State Technol., 63, 3732–3749, 2020.

17. Santhya, R., Latha, S., Balamurugan, S., Charanyaa, S., Further investigations on strategies developed for efficient discovery of matching dependencies. Int. J. Innov. Res. Comput. Commun. Eng. (An ISO 3297:2007 Certified Organization), 3, 18998–19004, 2014.

18. Tan, F. and Yan, P., Deep Reinforcement Learning: From Q-Learning to Deep Q-Learning, Springer, Cham, Guangzhou, China, pp. 475–483, 2017, 10.1007/978-3-319-70093-9_50.

19. Xiliang, C., Cao, L., Li, C.-X., Xu, Z.-X., Lai, J., Ensemble Network Architecture for Deep Reinforcement Learning. Math. Probl. Eng., 2018, 1–6, 2018, 10.1155/2018/2129393.

20. Li, Y., Deep Reinforcement Learning: An Overview, arXiv:1701.07274v6, 2017.

1 * Corresponding author: anbalagansamy@gmail.com

Artificial Intelligent Techniques for Wireless Communication and Networking

Подняться наверх