Читать книгу Clinical Obesity in Adults and Children - Группа авторов - Страница 65
References
Оглавление1 1. Skinner AC, Ravanbakht SN, Skelton JA, Perrin EM, Armstrong SC. Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics 2018; 141(3):e20173459. doi:10.1542/peds.2017‐3459
2 2. Di Cesare M, Sorić M, Bovet P, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med 2019; 17(1):212. doi:10.1186/s12916‐019‐1449‐8
3 3. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards. Weight‐for‐Age, Weight‐for‐Length, Weight‐for‐Height and Body Mass Index‐for‐Age: Methods and Development. Geneva: World Health Organization, 2006, Available from https://www.who.int/childgrowth/publications/technical_report_pub/en (accessed July 7, 2020).
4 4. de Onis M, Onyango A, Borghi E, et al. Worldwide implementation of the WHO Child Growth Standards. Public Health Nutr 2012; 15(9):1603–10. doi:10.1017/S136898001200105X
5 5. Kuczmarski R, Ogden CL, Guo S. 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 2002; 11(246):1–190.
6 6. Aris IM, Rifas‐Shiman SL, Li L‐J, et al. Association of weight for length vs body mass index during the first 2 years of life with cardiometabolic risk in early adolescence. JAMA Netw Open 2018; 1(5):e182460. doi:10.1001/jamanetworkopen.2018.2460
7 7. Rifas‐Shiman SL, Gillman MW, Oken E, Kleinman K, Taveras EM. Similarity of the CDC and WHO weight‐for‐length growth charts in predicting risk of obesity at age 5 years. Obesity 2012; 20(6):1261–5. doi:10.1038/oby.2011.350
8 8. Boeke CE, Oken E, Kleinman KP, Rifas‐Shiman SL, Taveras EM, Gillman MW. Correlations among adiposity measures in school‐aged children. BMC Pediatr 2013; 13:99. doi:10.1186/1471‐2431‐13‐99
9 9. Simmonds M, Burch J, Llewellyn A, et al. The use of measures of obesity in childhood for predicting obesity and the development of obesity‐related diseases in adulthood: a systematic review and meta‐analysis. Health Technol Assess 2015; 19(43):1–336. doi:10.3310/hta19430
10 10. Gallagher D, Andres A, Fields DA, et al. Body composition measurements from birth through 5 years: challenges, gaps, and existing & emerging technologies‐A National Institutes of Health workshop. Obes Rev 2020; 21(8):e13033. doi:10.1111/obr.13033
11 11. US Preventive Services Task Force. Screening for obesity in children and adolescents: US preventive services task force recommendation statement. JAMA 2017; 317(23):2417–26. doi:10.1001/jama.2017.6803
12 12. Kuh D, Ben‐Shlomo Y. A Life Course Approach to Chronic Disease Epidemiology Tracing the Origins of Ill‐Health from Early to Adult Life, 2nd edn. Oxford, UK: Oxford Medical Publications, 2004.
13 13. Laronda MM, Unno K, Butler LM, Kurita T. The development of cervical and vaginal adenosis as a result of diethylstilbestrol exposure In utero. Differentiation 2012; 84(3):252–60. doi:10.1016/j.diff.2012.05.004
14 14. Lowe WL, Lowe LP, Kuang A, et al. Maternal glucose levels during pregnancy and childhood adiposity in the Hyperglycemia and Adverse Pregnancy Outcome Follow‐up Study. Diabetologia 2019; 62(4):598–610. doi:10.1007/s00125‐018‐4809‐6
15 15. Pettitt DJ, Aleck KA, Baird HR, Carraher MJ, Bennett PH, Knowler WC. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 1988; 37(5):622–8. doi:10.2337/diab.37.5.622
16 16. Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 2000; 49(12):2208–11. doi:10.2337/diabetes.49.12.2208
17 17. McGill HC, McMahan CA. Determinants of atherosclerosis in the young. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am J Cardiol 1998; 82(10B):30T–36T. doi:10.1016/s0002‐9149(98)00720‐6
18 18. Gluckman P, Hanson M. Developmental Origins of Health and Disease. Cambridge, UK: Cambridge University Press, 2006.
19 19. Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 2014; 94(4):1027–76. doi:10.1152/physrev.00029.2013
20 20. Vickers MH, Gluckman PD, Coveny AH, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology 2005; 146(10):4211–6. doi:10.1210/en.2005‐0581
21 21. Oken E, Baccarelli AA, Gold DR, et al. Cohort profile: project viva. Int J Epidemiol 2015; 44(1):37–48. doi:10.1093/ije/dyu008
22 22. Gage SH, Munafò MR, Davey Smith G. Causal inference in developmental origins of health and disease (DOHaD) research. Annu Rev Psychol 2016; 67:567–85. doi:10.1146/annurev‐psych‐122414‐033352
23 23. Gillman MW, Oakey H, Baghurst PA, Volkmer RE, Robinson JS, Crowther CA. Effect of treatment of gestational diabetes mellitus on obesity in the next generation. Diabetes Care 2010; 33(5):964–8. doi:10.2337/dc09‐1810
24 24. Dodd JM, Turnbull D, McPhee AJ, et al. Antenatal lifestyle advice for women who are overweight or obese: LIMIT randomised trial. BMJ 2014; 348:g1285. doi:10.1136/bmj.g1285
25 25. Wood K, Mantzioris E, Lingwood B, et al. The effect of maternal DHA supplementation on body fat mass in children at 7 years: follow‐up of the DOMInO randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids 2018; 139:49–54. doi:10.1016/j.plefa.2017.09.013
26 26. Gillman MW, Rifas‐Shiman SL, Berkey CS, et al. Breast‐feeding and overweight in adolescence: within‐family analysis [corrected]. Epidemiology 2006; 17(1):112–4. doi:10.1097/01.ede.0000181629.59452.95
27 27. Brion M‐JA, Lawlor DA, Matijasevich A, et al. What are the causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from comparing high‐income with middle‐income cohorts. Int J Epidemiol 2011; 40(3):670–80. doi:10.1093/ije/dyr020
28 28. Chatzi L, Rifas‐Shiman SL, Georgiou V, et al. Adherence to the Mediterranean diet during pregnancy and offspring adiposity and cardiometabolic traits in childhood. Pediatr Obes 2017; 12(Suppl 1):47–56. doi:10.1111/ijpo.12191
29 29. Glass TA, Goodman SN, Hernán MA, Samet JM. Causal inference in public health. Annu Rev Public Health 2013; 34:61–75. doi:10.1146/annurev‐publhealth‐031811‐124606
30 30. Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003; 32(1):1–22. doi:10.1093/ije/dyg070
31 31. Evans DM, Moen G‐H, Hwang L‐D, Lawlor DA, Warrington NM. Elucidating the role of maternal environmental exposures on offspring health and disease using two‐sample Mendelian randomization. Int J Epidemiol 2019; 48(3):861–75. doi:10.1093/ije/dyz019
32 32. Allard C, Desgagné V, Patenaude J, et al. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics 2015; 10(4):342–51. doi:10.1080/15592294.2015.1029700
33 33. Hawkins SS, Baum CF, Oken E, Gillman MW. Associations of tobacco control policies with birth outcomes. JAMA Pediatr 2014; 168(11):e142365. doi:10.1001/jamapediatrics.2014.2365
34 34. Perng W, Gillman MW, Mantzoros CS, Oken E. A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol 2014;24(11):793–800.e1. doi:10.1016/j.annepidem.2014.08.002
35 35. Voerman E, Santos S, Patro Golab B, et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: an individual participant data meta‐analysis. PLoS Med 2019; 16(2):e1002744. doi:10.1371/journal.pmed.1002744
36 36. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre‐pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta‐analysis. PLoS One 2013; 8(4):e61627. doi:10.1371/journal.pone.0061627
37 37. Oken E, Gillman MW. Fetal origins of obesity. Obes Res 2003; 11(4):496–506. doi:10.1038/oby.2003.69
38 38. Lawlor DA, Smith GD, O’Callaghan M, et al. Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the mater‐university study of pregnancy and its outcomes. Am J Epidemiol 2007; 165(4):418–24. doi:10.1093/aje/kwk030
39 39. Kral JG, Biron S, Simard S, et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 2006; 118(6):e1644‐9. doi:10.1542/peds.2006‐1379
40 40. Oken E, Rifas‐Shiman SL, Field AE, Frazier AL, Gillman MW. Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol 2008; 112(5):999–1006. doi:10.1097/AOG.0b013e31818a5d50
41 41. International Weight Management in Pregnancy (i‐WIP) Collaborative Group. Effect of diet and physical activity based interventions in pregnancy on gestational weight gain and pregnancy outcomes: meta‐analysis of individual participant data from randomised trials. BMJ 2017; 358:j3119. doi:10.1136/bmj.j3119
42 42. Patel N, Godfrey KM, Pasupathy D, et al. Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy. Int J Obes 2017; 41(7):1018–26. doi:10.1038/ijo.2017.44
43 43. Vesco KK, Karanja N, King JC, et al. Efficacy of a group‐based dietary intervention for limiting gestational weight gain among obese women: a randomized trial. Obesity 2014; 22(9):1989–96. doi:10.1002/oby.20831
44 44. Karachaliou M, Georgiou V, Roumeliotaki T, et al. Association of trimester‐specific gestational weight gain with fetal growth, offspring obesity, and cardiometabolic traits in early childhood. Am J Obstet Gynecol 2015;212(4):502.e1–14. doi:10.1016/j.ajog.2014.12.038
45 45. Hivert M‐F, Rifas‐Shiman SL, Gillman MW, Oken E. Greater early and mid‐pregnancy gestational weight gains are associated with excess adiposity in mid‐childhood. Obesity 2016; 24(7):1546–53. doi:10.1002/oby.21511
46 46. Regnault N, Gillman MW, Rifas‐Shiman SL, Eggleston E, Oken E. Sex‐specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care 2013; 36(10):3045–53. doi:10.2337/dc13‐0333
47 47. Singh R, Pearson E, Avery PJ, et al. Reduced beta cell function in offspring of mothers with young‐onset type 2 diabetes. Diabetologia 2006; 49(8):1876–80. doi:10.1007/s00125‐006‐0285‐5
48 48. Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 2009; 587(Pt 4):905–15. doi:10.1113/jphysiol.2008.163477
49 49. Dong H‐P, Tan M‐Z, Liu Q‐J, Wang J, Zhong S‐B. The study on the effect of hyperglycemia on offspring fatty tissue metabolism during pregnancy. Eur Rev Med Pharmacol Sci. 2017; 21(16):3658–64.
50 50. Su R, Yan J, Yang H. Transgenerational glucose intolerance of tumor necrosis factor with epigenetic alteration in rat perirenal adipose tissue induced by intrauterine hyperglycemia. J Diabetes Res 2016; 2016:4952801. doi:10.1155/2016/4952801
51 51. Rajasingam D, Seed PT, Briley AL, Shennan AH, Poston L. A prospective study of pregnancy outcome and biomarkers of oxidative stress in nulliparous obese women. Am J Obstet Gynecol 2009;200(4):395.e1–9. doi:10.1016/j.ajog.2008.10.047
52 52. Barker DJP. Fetal origins of cardiovascular disease. Ann Med 1999; 31(suppl 1):3–6. doi:10.1080/07853890.1999.11904392
53 53. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976; 295(7):349–53. doi:10.1056/NEJM197608122950701
54 54. Kramer MS, Martin RM, Bogdanovich N, Vilchuk K, Dahhou M, Oken E. Is restricted fetal growth associated with later adiposity? Observational analysis of a randomized trial. Am J Clin Nutr 2014; 100(1):176–81. doi:10.3945/ajcn.113.079590
55 55. Yu ZB, Han SP, Zhu GZ, et al. Birth weight and subsequent risk of obesity: a systematic review and meta‐analysis. Obes Rev 2011; 12(7):525–42. doi:10.1111/j.1467‐789X.2011.00867.x
56 56. Kramer MS, Zhang X, Dahhou M, et al. Does fetal growth restriction ause later obesity? Pitfalls in analyzing causal mediators as confounders. Am J Epidemiol 2017; 185(7):585–90. doi:10.1093/aje/kww109
57 57. Taveras EM, Rifas‐Shiman SL, Sherry B, et al. Crossing growth percentiles in infancy and risk of obesity in childhood. Arch Pediatr Adolesc Med 2011; 165(11):993–8. doi:10.1001/archpediatrics.2011.167
58 58. Gillman MW, Rifas‐Shiman SL, Fernandez‐Barres S, Kleinman K, Taveras EM, Oken E. Beverage intake during pregnancy and childhood adiposity. Pediatrics 2017; 140(2):e20170031. doi:10.1542/peds.2017‐0031
59 59. Pearlman M, Obert J, Casey L. The association between artificial sweeteners and obesity. Curr Gastroenterol Rep 2017; 19(12):64. doi:10.1007/s11894‐017‐0602‐9
60 60. deKoning L, Anand SS. Adherence to a Mediterranean diet and survival in a Greek population. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. N Engl J Med 2003; 348: 2599‐608. Vasc Med 2004;9(2):145–6. doi:10.1191/1358863x04vm552xx
61 61. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature‐derived, population‐based dietary inflammatory index. Public Health Nutr 2014; 17(8):1689–96. doi:10.1017/S1368980013002115
62 62. Sen S, Rifas‐Shiman SL, Shivappa N, et al. Dietary inflammatory potential during pregnancy Is associated with lower fetal growth and breastfeeding failure: results from Project Viva. J Nutr 2016; 146(4):728–36. doi:10.3945/jn.115.225581
63 63. Sen S, Rifas‐Shiman SL, Shivappa N, et al. Associations of prenatal and early life dietary inflammatory potential with childhood adiposity and cardiometabolic risk in Project Viva. Pediatr Obes 2018; 13(5):292–300. doi:10.1111/ijpo.12221
64 64. Oken E, Levitan E, Gillman M. Maternal smoking during pregnancy and child overweight. Int J Obes 2008; 32(2):201–10. doi:10.1038/sj.ijo.0803760
65 65. Albers L, Sobotzki C, Kuß O, et al. Maternal smoking during pregnancy and offspring overweight: is there a dose–response relationship? An individual patient data meta‐analysis. Int J Obes 2018; 42(7):1249–64. doi:10.1038/s41366‐018‐0050‐0
66 66. Fleisch AF, Rifas‐Shiman SL, Koutrakis P, et al. Prenatal exposure to traffic pollution: associations with reduced fetal growth and rapid infant weight gain. Epidemiology 2015; 26(1):43–50. doi:10.1097/EDE.0000000000000203
67 67. Gao Y‐J, Holloway AC, Zeng Z, et al. Prenatal exposure to nicotine causes postnatal obesity and altered perivascular adipose tissue function. Obes Res 2005; 13(4):687–92. doi:10.1038/oby.2005.77
68 68. Holloway AC, Lim GE, Petrik JJ, Foster WG, Morrison KM, Gerstein HC. Fetal and neonatal exposure to nicotine in Wistar rats results in increased beta cell apoptosis at birth and postnatal endocrine and metabolic changes associated with type 2 diabetes. Diabetologia 2005; 48(12):2661–6. doi:10.1007/s00125‐005‐0022‐5
69 69. Gao Y‐J, Holloway AC, Su L‐Y, Takemori K, Lu C, Lee RMKW. Effects of fetal and neonatal exposure to nicotine on blood pressure and perivascular adipose tissue function in adult life. Eur J Pharmacol 2008; 590(1–3):264–8. doi:10.1016/j.ejphar.2008.05.044
70 70. Holloway AC, Cuu DQ, Morrison KM, Gerstein HC, Tarnopolsky MA. Transgenerational effects of fetal and neonatal exposure to nicotine. Endocrine 2007; 31(3):254–9. doi:10.1007/s12020‐007‐0043‐6
71 71. Braun JM. Early‐life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol 2017; 13(3):161–73. doi:10.1038/nrendo.2016.186
72 72. Johnson PI, Sutton P, Atchley DS, et al. The Navigation Guide—evidence‐based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 2014; 122(10):1028–39. doi:10.1289/ehp.1307893
73 73. Koustas E, Lam J, Sutton P, et al. The Navigation Guide—evidence‐based medicine meets environmental health: systematic review of nonhuman evidence for PFOA effects on fetal growth. Environ Health Perspect 2014; 122(10):1015–27. doi:10.1289/ehp.1307177
74 74. Cardenas A, Hauser R, Gold DR, et al. Association of perfluoroalkyl and polyfluoroalkyl substances with adiposity. JAMA Netw Open 2018; 1(4):e181493. doi:10.1001/jamanetworkopen.2018.1493
75 75. Domazet SL, Grøntved A, Timmermann AG, Nielsen F, Jensen TK. Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later: the European Youth Heart Study. Diabetes Care 2016; 39(10):1745–51. doi:10.2337/dc16‐0269
76 76. Halldorsson TI, Rytter D, Haug LS, et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. Environ Health Perspect 2012; 120(5):668–73. doi:10.1289/ehp.1104034
77 77. Braun JM, Chen A, Romano ME, et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: the HOME study. Obesity 2016; 24(1):231–7. doi:10.1002/oby.21258
78 78. Mora AM, Oken E, Rifas‐Shiman SL, et al. Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid‐childhood. Environ Health Perspect 2017; 125(3):467–73. doi:10.1289/EHP246
79 79. Høyer BB, Ramlau‐Hansen CH, Vrijheid M, et al. Anthropometry in 5‐ to 9‐year‐old greenlandic and ukrainian children in relation to prenatal exposure to perfluorinated alkyl substances. Environ Health Perspect 2015; 123(8):841–6. doi:10.1289/ehp.1408881
80 80. Andersen CS, Fei C, Gamborg M, Nohr EA, Sørensen TIA, Olsen J. Prenatal exposures to perfluorinated chemicals and anthropometry at 7 years of age. Am J Epidemiol 2013; 178(6):921–7. doi:10.1093/aje/kwt057
81 81. Rifas‐Shiman SL, Rich‐Edwards JW, Scanlon KS, Kleinman KP, Gillman MW. Misdiagnosis of overweight and underweight children younger than 2 years of age due to length measurement bias. MedGenMed 2005; 7(4):56.
82 82. Perng W, Hajj H, Belfort MB, et al. Birth size, early life weight gain, and midchildhood cardiometabolic health. J Pediatr 2016;173:122–30.e1. doi:10.1016/j.jpeds.2016.02.053
83 83. Perng W, Rifas‐Shiman SL, Kramer MS, et al. Early weight gain, linear growth, and mid‐childhood blood pressure: a prospective study in Project Viva. Hypertension 2016; 67(2):301–8. doi:10.1161/HYPERTENSIONAHA.115.06635
84 84. Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ 2005; 331(7522):929. doi:10.1136/bmj.38586.411273.E0
85 85. Ong KK, Loos RJF. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr 2006; 95(8):904–8. doi:10.1080/08035250600719754
86 86. Barker DJP, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med 2005; 353(17):1802–9. doi:10.1056/NEJMoa044160
87 87. Ylihärsilä H, Kajantie E, Osmond C, Forsén T, Barker DJ, Eriksson JG. Body mass index during childhood and adult body composition in men and women aged 56–70 y. Am J Clin Nutr 2008; 87(6):1769–75. doi:10.1093/ajcn/87.6.1769
88 88. Bhargava SK, Sachdev HS, Fall CHD, et al. Relation of serial changes in childhood body‐mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004; 350(9):865–75. doi:10.1056/NEJMoa035698
89 89. Yan J, Liu L, Zhu Y, Huang G, Wang PP. The association between breastfeeding and childhood obesity: a meta‐analysis. BMC Public Health 2014; 14:1267. doi:10.1186/1471‐2458‐14‐1267
90 90. Kramer MS, Moodie EEM, Dahhou M, Platt RW. Breastfeeding and infant size: evidence of reverse causality. Am J Epidemiol 2011; 173(9):978–83. doi:10.1093/aje/kwq495
91 91. Kramer MS, Matush L, Vanilovich I, et al. A randomized breast‐feeding promotion intervention did not reduce child obesity in Belarus. J Nutr 2009; 139(2):417S–21S. doi:10.3945/jn.108.097675
92 92. Martin RM, Kramer MS, Patel R, et al. Effects of promoting long‐term, exclusive breastfeeding on adolescent adiposity, blood pressure, and growth trajectories: a secondary analysis of a randomized clinical trial. JAMA Pediatr 2017; 171(7):e170698. doi:10.1001/jamapediatrics.2017.0698
93 93. Martin RM, Patel R, Kramer MS, et al. Effects of promoting longer‐term and exclusive breastfeeding on cardiometabolic risk factors at age 11.5 years: a cluster‐randomized, controlled trial. Circulation 2014; 129(3):321–9. doi:10.1161/CIRCULATIONAHA.113.005160
94 94. Gunderson EP, Rifas‐Shiman SL, Oken E, et al. Association of fewer hours of sleep at 6 months postpartum with substantial weight retention at 1 year postpartum. Am J Epidemiol 2008; 167(2):178–87. doi:10.1093/aje/kwm298
95 95. Wu Y, Zhai L, Zhang D. Sleep duration and obesity among adults: a meta‐analysis of prospective studies. Sleep Med 2014; 15(12):1456–62. doi:10.1016/j.sleep.2014.07.018
96 96. Li L, Zhang S, Huang Y, Chen K. Sleep duration and obesity in children: a systematic review and meta‐analysis of prospective cohort studies. J Paediatr Child Health 2017; 53(4):378–85. doi:10.1111/jpc.13434
97 97. Miller MA, Kruisbrink M, Wallace J, Ji C, Cappuccio FP. Sleep duration and incidence of obesity in infants, children, and adolescents: a systematic review and meta‐analysis of prospective studies. Sleep 2018; 41(4):1–19. doi:10.1093/sleep/zsy018
98 98. Taveras EM, Rifas‐Shiman SL, Oken E, Gunderson EP, Gillman MW. Short sleep duration in infancy and risk of childhood overweight. Arch Pediatr Adolesc Med 2008; 162(4):305–11. doi:10.1001/archpedi.162.4.305
99 99. Cespedes EM, Hu FB, Redline S, et al. Chronic insufficient sleep and diet quality: contributors to childhood obesity. Obesity 2016; 24(1):184–90. doi:10.1002/oby.21196
100 100. Taveras EM, Gillman MW, Peña M‐M, Redline S, Rifas‐Shiman SL. Chronic sleep curtailment and adiposity. Pediatrics 2014; 133(6):1013–22. doi:10.1542/peds.2013‐3065
101 101. Ekstedt M, Darkeh MHSE, Xiu L, et al. Sleep differences in one‐year‐old children were related to obesity risks based on their parents’ weight according to baseline longitudinal study data. Acta Paediatr 2017; 106(2):304–11. doi:10.1111/apa.13657
102 102. Peña M‐M, Rifas‐Shiman SL, Gillman MW, Redline S, Taveras EM. Racial/ethnic and socio‐contextual correlates of chronic sleep curtailment in childhood. Sleep 2016; 39(9):1653–61. doi:10.5665/sleep.6086
103 103. Taylor BJ, Gray AR, Galland BC, et al. Targeting sleep, food, and activity in infants for obesity prevention: an RCT. Pediatrics 2017; 139(3):e20162037. doi:10.1542/peds.2016‐2037
104 104. Ash T, Taveras EM. Associations of short sleep duration with childhood obesity and weight gain: summary of a presentation to the National Academy of Science’s Roundtable on Obesity Solutions. Sleep Health 2017; 3(5):389–92. doi:10.1016/j.sleh.2017.07.008
105 105. Agaronov A, Ash T, Sepulveda M, Taveras EM, Davison KK. Inclusion of sleep promotion in family‐based interventions to prevent childhood obesity. Child Obes 2018; 14(8):485–500. doi:10.1089/chi.2017.0235
106 106. Fernandez‐Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019; 62(10):1789–801. doi:10.1007/s00125‐019‐4951‐9
107 107. Tobi EW, Goeman JJ, Monajemi R, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 2014; 5:5592. doi:10.1038/ncomms6592
108 108. Sharp GC, Salas LA, Monnereau C, et al. Maternal BMI at the start of pregnancy and offspring epigenome‐wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet 2017; 26(20):4067–85. doi:10.1093/hmg/ddx290
109 109. Hjort L, Martino D, Grunnet LG, et al. Gestational diabetes and maternal obesity are associated with epigenome‐wide methylation changes in children. JCI Insight 2018; 3(17):e122572. doi:10.1172/jci.insight.122572
110 110. Küpers LK, Xu X, Jankipersadsing SA, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol 2015; 44(4):1224–37. doi:10.1093/ije/dyv048
111 111. Cardenas A, Lutz SM, Everson TM, Perron P, Bouchard L, Hivert M‐F. Mediation by placental DNA methylation of the association of prenatal maternal smoking and birth weight. Am J Epidemiol 2019; 188(11):1878–86. doi:10.1093/aje/kwz184
112 112. Marco A, Kisliouk T, Tabachnik T, Meiri N, Weller A. Overweight and CpG methylation of the Pomc promoter in offspring of high‐fat‐diet‐fed dams are not “reprogrammed” by regular chow diet in rats. FASEB J 2014; 28(9):4148–57. doi:10.1096/fj.14‐255620
113 113. Steculorum SM, Bouret SG. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 2011; 152(11):4171–9. doi:10.1210/en.2011‐1279
114 114. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004; 304(5667):108–10. doi:10.1126/science.1095004
115 115. Steculorum SM, Collden G, Coupe B, et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J Clin Invest 2015; 125(2):846–58. doi:10.1172/JCI73688
116 116. Vogt MC, Paeger L, Hess S, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high‐fat feeding. Cell 2014; 156(3):495–509. doi:10.1016/j.cell.2014.01.008
117 117. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341(6150):1241214. doi:10.1126/science.1241214
118 118. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity‐associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122):1027–31. doi:10.1038/nature05414
119 119. Yuan C, Gaskins AJ, Blaine AI, et al. Association between cesarean birth and risk of obesity in offspring in childhood, adolescence, and early adulthood. JAMA Pediatr 2016; 170(11):e162385. doi:10.1001/jamapediatrics.2016.2385
120 120. Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes 2014; 38(10):1290–8. doi:10.1038/ijo.2014.119
121 121. Block JP, Bailey LC, Gillman MW, et al. Early antibiotic exposure and weight outcomes in young children. Pediatrics 2018; 142(6):e20180290. doi:10.1542/peds.2018‐0290
122 122. Gillman MW, Ludwig DS. How early should obesity prevention start? N Engl J Med 2013; 369(23):2173–5. doi:10.1056/NEJMp1310577
123 123. Aris IM, Bernard JY, Chen L‐W, et al. Modifiable risk factors in the first 1000 days for subsequent risk of childhood overweight in an Asian cohort: significance of parental overweight status. Int J Obes 2018; 42(1):44–51. doi:10.1038/ijo.2017.178
124 124. Dabelea D, Mayer‐Davis EJ, Lamichhane AP, et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH Case‐Control Study. Diabetes Care 2008; 31(7):1422–6. doi:10.2337/dc07‐2417
125 125. Ogden CL, Carroll MD, Fakhouri TH, et al. Prevalence of obesity among youths by household income and education level of head of household ‐ United States 2011–2014. MMWR Morb Mortal Wkly Rep 2018; 67(6):186–9. doi:10.15585/mmwr.mm6706a3
126 126. Weden MM, Brownell P, Rendall MS. Prenatal, perinatal, early life, and sociodemographic factors underlying racial differences in the likelihood of high body mass index in early childhood. Am J Public Health 2012; 102(11):2057–67. doi:10.2105/AJPH.2012.300686
127 127. Taveras EM, Gillman MW, Kleinman KP, Rich‐Edwards JW, Rifas‐Shiman SL. Reducing racial/ethnic disparities in childhood obesity: the role of early life risk factors. JAMA Pediatr 2013; 167(8):731–8. doi:10.1001/jamapediatrics.2013.85
128 128. Pan L, Freedman DS, Park S, Galuska DA, Potter A, Blanck HM. Changes in obesity among US children aged 2 through 4 years enrolled in WIC during 2010–2016. JAMA 2019; 321(23):2364–6. doi:10.1001/jama.2019.5051
129 129. Daepp MIG, Gortmaker SL, Wang YC, Long MW, Kenney EL. WIC food package changes: trends in childhood obesity prevalence. Pediatrics 2019; 143(5):e20182841. doi:10.1542/peds.2018‐2841