Читать книгу Digital Forensics and Internet of Things - Группа авторов - Страница 27

References

Оглавление

1. Schroff, F., Kalenichenko, D., Philbin, J., FaceNet: A Unified Embedding for Face Recognition and clustering, in: Publised in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Boston, MA, USA.

2. Datta, A.K., Datta, M., Banerjee, P.K., Face Detection and Recognition: Theory and Practice, p. 352 Pages, Chapman and Hall/CRC CRC Press, Florida, 2016, 2019.

3. Qiong, C., Li, S., Weidi, X., Parkhi, O.M., Zisserman, A., VGGFace 2: A dataset for recognising faces across pose and age. IEEE Conference on Automatic Face and Gesture Recognition, 2018. Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET), 9, VI, June 2021.

4. Tian, J., Xie, H., Hu, S., Liu, J., Multidimensional face representation in deep convolutional neural network reveals the mechanism underlying AI racism. Front. Comput. Neurosci., 10 March 2021, https://doi.org/10.3389/fncom. 2021.620281.

5. Kamencay, P., Benco, M., Mizdos, T., Radil, R., A new method for face recognition using convolutional neural network face recognition system - state of the art. Adv. Electr. Electron. Eng., 15, 4, 663–672, 2017.

6. Gutta, S. and Wechsler, H., Face recognition using hybrid classifiers // Pattern Recognition. IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), vol. 30, IEEE, Washington, DC, USA, pp. 539 – 553, 1997.

7. Chollet., F., Keras: The Python Deep Learning library. Keras.Io, 2015, Astrophysics Source Code Library, record ascl:1806.022, Pub Date: June 2018.

8. Januzaj, Y., Luma, A., Januzaj, Y., Ramaj., V., Real time access control based on face recognition, in: International Conference on Network security & Computer Science (ICNSCS-15), pp. 7–12, 2015.

9. Barnouti, N.H., Al-Dabbagh, S.S.M., Matti, W.E., Face recognition: A literature review. Int. J. Appl. Inf. Syst., 11, 4, 21–31, Sep. 2016.

10. Xiaogang, W. and Xiaoou, T., A unified frame work for subspace face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 26, 9, 1222–1228, 2004.

11. Patil, Prof. B.S. and Yardi, Prof. A.R., Real Time Face Recognition System using Eigen Faces. Int. J. Electron. Commun. Eng. Technol. (IJECET), 4, 2, 72–79, 2013.

12. Jing, X.-Y., Wong, H.-S., Zhang, D., Face recognition based on discriminant fractional Fourier feature extraction. Pattern Recogn. Lett., 27, 1465–1471, 2006.

13. Starovoitov, V., Samal, D., Votsis, G., Kollias, S., Face recognition by geometric features. Proceedings of 5-th Pattern Recognition and Information Analysis Conference, Minsk, May 1999.

14. Rein-Lien, H., Face Detection and Modeling for Recognition, PhD thesis, Department of Computer Science & Engineering, Michigan State University, USA, 2002.

15.Sajjad, M. et al., Raspberry pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Gener. Comp. Sy., 108, 4, 995–1007, November 2017. Project: Facial Expression Analysis for Law-enforcement Services.

16. Rizon, M. et al., Face recognition using eigenfaces and neural networks. Am. J. Appl. Sci., 2, 6, 1872–1875, 2006.

17. Agarwal, M., Jain, N., Kumar, M.M., Agrawal, H., Face Recognition Using Eigen Faces and Artificial Neural Network. Int. J. Comput. Theory Eng., 2, 4, 624–629, 2010.

18. Shanthamallu, U.S., Spanias, A., Tepedelenlioglu, C., Stanley., M., A brief survey of machine learning methods and their sensor and IoT applications. 2017 8th Int. Conf. Information, Intell. Syst. Appl. IISA 2017, vol. 2018-January, pp. 1–8, 2018.

19. Oh, S.H., Kim, G.W., Lim., K.S., Compact deep learned feature-based face recognition, for Visual Internet of Things J. Supercomput., 74, 6729–6741 (2018), Published: 28 November 2017.

20. Mulla., M.R., Facial image-based security system using PCA. Int. J. Power Electron. Drive Syst. (IJPEDS), 11, 1, 417–424, March 2020.

* Corresponding author: arpit.eic@gmail.com

Digital Forensics and Internet of Things

Подняться наверх