Читать книгу Flexible Supercapacitors - Группа авторов - Страница 44
References
Оглавление1 1 Li, Lou, Z., Chen, D. et al. (2018). Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 14 (43): e1702829.
2 2 Lee, G., Kim, D., Kim, D. et al. (2015). Fabrication of a stretchable and patchable array of high performance micro‐supercapacitors using a non‐aqueous solvent based gel electrolyte. Energy Environ. Sci. 8 (6): 1764–1774.
3 3 Hu, H., Pei, Z., and Ye, C. (2015). Recent advances in designing and fabrication of planar micro‐supercapacitors for on‐chip energy storage. Energy Storage Mater. 1: 82–102.
4 4 Li, L., Wu, Z., Yuan, S. et al. (2014). Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7 (7): 2101–2122.
5 5 Chu, X., Zhang, H., Su, H. et al. (2018). A novel stretchable supercapacitor electrode with high linear capacitance. Chem. Eng. J. 349: 168–175.
6 6 Xu, J., Wu, H., Lu, L. et al. (2014). Integrated photo‐supercapacitor based on Bi‐polar TiO2 nanotube arrays with selective one‐side plasma‐assisted hydrogenation. Adv. Funct. Mater. 24 (13): 1840–1846.
7 7 Chen, X., Lin, H., Chen, P. et al. (2014). Smart, stretchable supercapacitors. Adv. Mater. 26 (26): 4444–4449.
8 8 Huang, Y., Liang, J., and Chen, Y. (2012). An overview of the applications of graphene‐based materials in supercapacitors. Small 8 (12): 1805–1834.
9 9 Zheng, Y., Yang, Y., Chen, S. et al. (2016). Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm 18 (23): 4218–4235.
10 10 Senthilkumar, B., Vijaya, S.K., Sanjeeviraja, C. et al. (2013). Synthesis and physico‐chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. J. Alloys Compd. 553: 350–357.
11 11 Mahmood, Q., Park, S.K., Kwon, K.D. et al. (2016). Transition from diffusion‐controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 6 (1): n/a‐n/a.
12 12 Hsia, B., Marschewski, J., Wang, S. et al. (2014). Highly flexible, all `solid‐state micro‐supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 25 (5): 055401.
13 13 An, C.H., Wang, Y.J., Huang, Y.N. et al. (2014). Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique. Nano Energy 10: 125–134.
14 14 Wu, H., Jiang, K., Gu, S. et al. (2015). Two‐dimensional Ni(OH)2 nanoplates for flexible on‐chip microsupercapacitors. Nano Res. 8 (11): 3544–3552.
15 15 Yu, Z.‐Y., Chen, L.‐F., and Yu, S.‐H. (2014). Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2 (28): 10889.
16 16 Li, L., Lou, Z., Han, W. et al. (2016). Flexible in‐plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications. Nanoscale 8 (32): 14986–14991.
17 17 Ai, Y., Lou, Z., Li, L. et al. (2016). Meters‐long flexible CoNiO2‐nanowires@carbon‐fibers based wire‐supercapacitors for wearable electronics. Adv. Mater. Technol. 1 (8): 1600142.
18 18 Zhao, X., Zheng, B., Huang, T. et al. (2015). Graphene‐based single fiber supercapacitor with a coaxial structure. Nanoscale 7 (21): 9399–9404.
19 19 Wu, Z.S., Parvez, K., Feng, X. et al. (2013). Graphene‐based in‐plane micro‐supercapacitors with high power and energy densities. Nat. Commun. 4: 2487.
20 20 Wu, Z.S., Feng, X., and Cheng, H.M. (2013). Recent advances in graphene‐based planar micro‐supercapacitors for on‐chip energy storage. Natl. Sci. Rev. 1 (2): 277–292.
21 21 Liu, T., Zhang, F., Song, Y. et al. (2017). Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5 (34): 17705–17733.
22 22 Beidaghi, M. and Wang, C. (2012). Micro‐supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22 (21): 4501–4510.
23 23 Yan, C. and Lee, P.S. (2014). Stretchable energy storage and conversion devices. Small 10 (17): 3443–3460.
24 24 Qi, D., Liu, Z., Liu, Y. et al. (2015). Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater. 27 (37): 5559–5566.
25 25 Yun, J., Lim, Y., Jang, G.N. et al. (2016). Stretchable patterned graphene gas sensor driven by integrated micro‐supercapacitor array. Nano Energy 19: 401–414.
26 26 Núñez, C.G., Navaraj, W.T., Polat, E.O. et al. (2017). Energy‐autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27 (18): 1606287.
27 27 Liu, Z., Qi, D., Guo, P. et al. (2015). Thickness‐gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 27 (40): 6230–6237.
28 28 Huang, Y., Huang, Y., Zhu, M. et al. (2015). Magnetic‐assisted, self‐healable, yarn‐based supercapacitor. ACS Nano 9 (6): 6242–6251.
29 29 Chen, S., Lou, Z., Chen, D. et al. (2016). Polymer‐enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 1 (7): 1600136.
30 30 Wang, K., Zhang, X., Li, C. et al. (2015). Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv. Mater. 27 (45): 7451–7457.
31 31 Huang, Y., Zhong, M., Huang, Y. et al. (2015). A self‐healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6: 10310.
32 32 Huang, Y., Zhong, M., Shi, F. et al. (2017). An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed. Engl. 56 (31): 9141–9145.
33 33 Zhang, X., Zhang, H., Lin, Z. et al. (2016). Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci. China Mater. 59 (6): 475–494.
34 34 An, T. and Cheng, W. (2018). Recent progress in stretchable supercapacitors. J. Mater. Chem. A 6 (32): 15478–15494.
35 35 Xu, P., Gu, T., Cao, Z. et al. (2014). Carbon nanotube fiber based stretchable wire‐shaped supercapacitors. Adv. Energy Mater. 4 (3): 1300759.
36 36 Yang, Z., Deng, J., Chen, X. et al. (2013). A highly stretchable, fiber‐shaped supercapacitor. Angew. Chem. Int. Ed. Engl. 52 (50): 13453–13457.
37 37 Niu, Z., Dong, H., Zhu, B. et al. (2013). Highly stretchable, integrated supercapacitors based on single‐walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25 (7): 1058–1064.
38 38 Kim, H., Yoon, J., Lee, G. et al. (2016). Encapsulated, high‐performance, stretchable array of stacked planar micro‐supercapacitors as waterproof wearable energy storage devices. ACS Appl. Mater. Interfaces 8 (25): 16016–16025.
39 39 Kim, D., Shin, G., Kang, Y.J. et al. (2013). Fabrication of a stretchable solid‐state micro‐supercapacitor array. ACS Nano 7 (9): 7975–7982.
40 40 He, S., Cao, J., Xie, S. et al. (2016). Stretchable supercapacitor based on a cellular structure. J. Mater. Chem. A 4 (26): 10124–10129.
41 41 Lv, Z., Luo, Y., Tang, Y. et al. (2018). Editable supercapacitors with customizable stretchability based on mechanically strengthened Ultralong MnO2 nanowire composite. Adv. Mater. 30 (2).
42 42 Xu, J., Ku, Z., Zhang, Y. et al. (2016). Integrated photo‐supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1 (5): 1600074.
43 43 Sun, H., Zhang, Y., Zhang, J. et al. (2017). Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2 (6): 17023.
44 44 Le, V.T., Kim, H., Ghosh, A. et al. (2013). Coaxial fiber supercapacitor using all‐carbon material electrodes. ACS Nano 7 (7): 5940–5947.
45 45 Xiao, X., Li, T., Yang, P. et al. (2012). Fiber‐based all‐solid‐state flexible supercapacitors for self‐powered systems. ACS Nano 6 (10): 9200–9206.
46 46 Li, P., Jin, Z., Peng, L. et al. (2018). Stretchable all‐gel‐state fiber‐shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 30 (18): e1800124.
47 47 Liu, B., Liu, B., Wang, X. et al. (2014). Constructing optimized wire electrodes for fiber supercapacitors. Nano Energy 10: 99–107.
48 48 Ren, J., Li, L., Chen, C. et al. (2013). Twisting carbon nanotube fibers for both wire‐shaped micro‐supercapacitor and micro‐battery. Adv. Mater. 25 (8): 1155–1159, 1224.
49 49 Kou, L., Huang, T., Zheng, B. et al. (2014). Coaxial wet‐spun yarn supercapacitors for high‐energy density and safe wearable electronics. Nat. Commun. 5: 3754.
50 50 Wang, Q., Wang, X., Xu, J. et al. (2014). Flexible coaxial‐type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8: 44–51.
51 51 Chen, X., Qiu, L., Ren, J. et al. (2013). Novel electric double‐layer capacitor with a coaxial fiber structure. Adv. Mater. 25 (44): 6436–6441.
52 52 Li, L., Lou, Z., Chen, D. et al. (2018). Hollow polypyrrole sleeve based coaxial fiber supercapacitors for wearable integrated Photosensing system. Adv. Mater. Technol. 3 (8): 1800115.
53 53 Wang, H., Wang, C., Jian, M. et al. (2018). Superelastic wire‐shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 11 (5): 2347–2356.
54 54 Ren, J., Xu, Q., and Li, Y.‐G. (2018). Flexible fiber‐shaped energy storage devices: principles, progress, applications and challenges. Flex. Print. Electron. 3 (1): 013001.
55 55 Choi, C., Kim, S.H., Sim, H.J. et al. (2015). Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid‐state supercapacitors. Sci. Rep. 5: 9387.
56 56 Li, M., Zu, M., Yu, J. et al. (2017). Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13 (12).
57 57 Choi, C., Lee, J.M., Kim, S.H. et al. (2016). Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16 (12): 7677–7684.
58 58 Chen, T., Hao, R., Peng, H. et al. (2015). High‐performance, stretchable, wire‐shaped supercapacitors. Angew. Chem. Int. Ed. Engl. 54 (2): 618–622.
59 59 Zhang, Q., Sun, J., Pan, Z. et al. (2017). Stretchable fiber‐shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 39: 219–228.
60 60 Yu, J., Lu, W., Smith, J.P. et al. (2017). A high performance stretchable asymmetric fiber‐shaped supercapacitor with a core‐sheath helical structure. Adv. Energy Mater. 7 (3): 1600976.
61 61 Yun, J., Kim, D., Lee, G. et al. (2014). All‐solid‐state flexible micro‐supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 79: 156–164.
62 62 Gu, S., Lou, Z., Li, L. et al. (2015). Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on‐chip micro‐supercapacitors for integrated photodetecting applications. Nano Res. 9 (2): 424–434.
63 63 Lv, T., Yao, Y., Li, N. et al. (2016). Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew. Chem. Int. Ed. Engl. 55 (32): 9191–9195.
64 64 Yu, C., Masarapu, C., Rong, J. et al. (2009). Stretchable supercapacitors based on buckled single‐walled carbon‐nanotube macrofilms. Adv. Mater. 21 (47): 4793–4797.
65 65 Xie, Y., Liu, Y., Zhao, Y. et al. (2014). Stretchable all‐solid‐state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2 (24): 9142–9149.
66 66 Yu, J., Lu, W., Pei, S. et al. (2016). Omnidirectionally stretchable high‐performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 10 (5): 5204–5211.
67 67 El‐Kady, M.F. and Kaner, R.B. (2013). Scalable fabrication of high‐power graphene micro‐supercapacitors for flexible and on‐chip energy storage. Nat. Commun. 4: 1475.
68 68 Lim, Y., Yoon, J., Yun, J. et al. (2014). Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 8 (11): 11639–11650.
69 69 Wang, J., Li, F., Zhu, F. et al. (2018). Recent progress in micro‐supercapacitor design, integration, and functionalization. Small Methods 3 (8): 1800367.
70 70 Moon, Y.S., Kim, D., Lee, G. et al. (2015). Fabrication of flexible micro‐supercapacitor array with patterned graphene foam/MWNT‐COOH/MnOx electrodes and its application. Carbon 81: 29–37.
71 71 Qi, D., Liu, Z., Yu, M. et al. (2015). Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv. Mater. 27 (20): 3145–3151.
72 72 Li, L., Lou, Z., Han, W. et al. (2017). Highly stretchable micro‐supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2 (3): 1600282.
73 73 Pu, J., Wang, X., Xu, R. et al. (2016). Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. ACS Nano 10 (10): 9306–9315.
74 74 He, S., Qiu, L., Wang, L. et al. (2016). A three‐dimensionally stretchable high performance supercapacitor. J. Mater. Chem. A 4 (39): 14968–14973.
75 75 Niu, Z., Zhou, W., Chen, X. et al. (2015). Highly compressible and all‐solid‐state supercapacitors based on nanostructured composite sponge. Adv. Mater. 27 (39): 6002–6008.
76 76 Guo, Y., Zheng, K., and Wan, P. (2018). A flexible stretchable hydrogel electrolyte for healable all‐in‐one configured supercapacitors. Small 14 (14): e1704497.
77 77 Jia, R., Li, L., Ai, Y. et al. (2018). Self‐healable wire‐shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Sci. China Mater. 61 (2): 254–262.
78 78 Chen, C., Cao, J., Wang, X. et al. (2017). Highly stretchable integrated system for micro‐supercapacitor with AC line filtering and UV detector. Nano Energy 42: 187–194.
79 79 Li, L., Fu, C., Lou, Z. et al. (2017). Flexible planar concentric circular micro‐supercapacitor arrays for wearable gas sensing application. Nano Energy 41: 261–268.
80 80 Lou, Z., Li, Wang, L. et al. (2017). Recent progress of self‐powered sensing systems for Wearable Electronics. Small 13 (45): 1701791.
81 81 Chen, D., Lou, Z., Jiang, K. et al. (2018). Device configurations and future prospects of flexible/stretchable lithium‐ion batteries. Adv. Funct. Mater. 28 (51): 1805596.
82 82 Hagleitner, C., Hierlemann, A., Lange, D. et al. (2001). Smart single‐chip gas sensor microsystem. Nature 414 (6861): 293–296.
83 83 Chen, C., Cao, J., Lu, Q. et al. (2017). Foldable all‐solid‐state supercapacitors integrated with photodetectors. Adv. Funct. Mater. 27 (3): 1604639.
84 84 Hou, X., Liu, B., Wang, X. et al. (2013). SnO2‐microtube‐assembled cloth for fully flexible self‐powered photodetector nanosystems. Nanoscale 5 (17): 7831.
85 85 Hu, Y., Cheng, H., Zhao, F. et al. (2014). All‐in‐one graphene fiber supercapacitor. Nanoscale 6 (12): 6448–6451.
86 86 Xu, J. and Shen, G. (2015). A flexible integrated photodetector system driven by on‐chip microsupercapacitors. Nano Energy 13: 131–139.
87 87 Kim, D., Yun, J., Lee, G. et al. (2014). Fabrication of high performance flexible micro‐supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. Nanoscale 6 (20): 12034–12041.
88 88 Cao, X., Jie, Y., Wang, N. et al. (2016). Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6 (23): 1600665.
89 89 Cha, S., Kim, S.M., Kim, H. et al. (2011). Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11 (12): 5142–5147.
90 90 Choi, D., Choi, M.Y., Choi, W.M. et al. (2010). Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 22 (19): 2187.
91 91 Chun, J., Ye, B.U., Lee, J.W. et al. (2016). Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 7: 12985.
92 92 Fan, F.R., Tang, W., and Wang, Z.L. (2016). Flexible nanogenerators for energy harvesting and self‐powered electronics. Adv. Mater. 28 (22): 4283–4305.
93 93 Kwon, J., Seung, W., Sharma, B.K. et al. (2012). A high performance PZT ribbon‐based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5 (10): 8970.
94 94 Lee, K.Y., Gupta, M.K., and Kim, S.W. (2015). Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14: 139–160.
95 95 Lee, K.Y., Kim, D., Lee, J.‐H. et al. (2014). Unidirectional high‐power generation via stress‐induced dipole alignment from ZnSnO3Nanocubes/polymer hybrid piezoelectric nanogenerator. Adv. Funct. Mater. 24 (1): 37–43.
96 96 Wang, Z.L. (2012). Self‐powered nanosensors and nanosystems. Adv. Mater. 24 (2): 280–285.
97 97 Fu, Y., Wu, H., Ye, S. et al. (2013). Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6 (3): 805.
98 98 Guo, H., Yeh, M.H., Lai, Y.C. et al. (2016). All‐in‐one shape‐adaptive self‐charging power package for wearable electronics. ACS Nano 10 (11): 10580–10588.
99 99 Zi, Y., Lin, L., Wang, J. et al. (2015). Triboelectric‐pyroelectric‐piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing. Adv. Mater. 27 (14): 2340–2347.
100 100 Zhang, Z., Chen, X., Chen, P. et al. (2014). Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26 (3): 466–470.
101 101 Yun, J., Song, C., Lee, H. et al. (2018). Stretchable array of high‐performance micro‐supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 49: 644–654.
102 102 Bi, D., Xu, B., Gao, P. et al. (2016). Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy 23: 138–144.
103 103 Freitag, M., Teuscher, J., Saygili, Y. et al. (2017). Dye‐sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 11 (6): 372–378.
104 104 Akhtar, F. and Rehmani, M.H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review. Renew. Sust. Energ. Rev. 45: 769–784.
105 105 Yue, Y., Yang, Z., Liu, N. et al. (2016). A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10 (12): 11249–11257.
106 106 Kim, D., Kim, D., Lee, H. et al. (2016). Body‐attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 28 (4): 748–756.